Normality and non-normality of group compactifications in simple projective spaces
Paolo Bravi[1]; Jacopo Gandini[1]; Andrea Maffei[1]; Alessandro Ruzzi[1]
- [1] Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 6, page 2435-2461
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBravi, Paolo, et al. "Normality and non-normality of group compactifications in simple projective spaces." Annales de l’institut Fourier 61.6 (2011): 2435-2461. <http://eudml.org/doc/219727>.
@article{Bravi2011,
abstract = {Given an irreducible representation $V$ of a complex simply connected semisimple algebraic group $G$ we consider the closure $X$ of the image of $G$ in $\mathbb\{P\}(\text\{End\}(V))$. We determine for which $V$ the variety $X$ is normal and for which $V$ is smooth.},
affiliation = {Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY; Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY; Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY; Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY},
author = {Bravi, Paolo, Gandini, Jacopo, Maffei, Andrea, Ruzzi, Alessandro},
journal = {Annales de l’institut Fourier},
keywords = {semisimple algebraic groups; group compactifications; projective representations; wonderful varieties; symmetric spaces},
language = {eng},
number = {6},
pages = {2435-2461},
publisher = {Association des Annales de l’institut Fourier},
title = {Normality and non-normality of group compactifications in simple projective spaces},
url = {http://eudml.org/doc/219727},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Bravi, Paolo
AU - Gandini, Jacopo
AU - Maffei, Andrea
AU - Ruzzi, Alessandro
TI - Normality and non-normality of group compactifications in simple projective spaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2435
EP - 2461
AB - Given an irreducible representation $V$ of a complex simply connected semisimple algebraic group $G$ we consider the closure $X$ of the image of $G$ in $\mathbb{P}(\text{End}(V))$. We determine for which $V$ the variety $X$ is normal and for which $V$ is smooth.
LA - eng
KW - semisimple algebraic groups; group compactifications; projective representations; wonderful varieties; symmetric spaces
UR - http://eudml.org/doc/219727
ER -
References
top- N. Bourbaki, Éléments de mathématique, 1337 (1968), Hermann Paris Zbl0186.33001MR453824
- M. Brion, Variétés sphériques et théorie de Mori, Duke Math. J. 72 (1993), 369-404 Zbl0821.14029MR1248677
- R. Chirivì, C. De Concini, A. Maffei, On normality of cones over symmetric varieties, Tohoku Math. J. (2) 58 (2006), 599-616 Zbl1141.14033MR2297202
- R. Chirivì, A. Maffei, Projective normality of complete symmetric varieties, Duke Math. J. 122 (2004), 93-123 Zbl1064.14058MR2046808
- C. De Concini, Normality and non normality of certain semigroups and orbit closures, Algebraic transformation groups and algebraic varieties 132 (2004), 15-35, Springer, Berlin Zbl1058.22013MR2090668
- C. De Concini, C. Procesi, Complete symmetric varieties, Invariant Theory 996 (1983), 1-44, Springer, Berlin Zbl0581.14041
- S.S. Kannan, Projective normality of the wonderful compactification of semisimple adjoint groups, Math. Z. 239 (2002), 673-682 Zbl0997.14012MR1902056
- F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
- F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, DMV Sem. 13 (1989), 63-75 Zbl0722.14032MR1044585
- A. Ruzzi, Smooth projective symmetric varieties with Picard number equal to one Zbl1213.14092
- J.R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), 340-364 Zbl0916.06001MR1626860
- D.A. Timashev, Equivariant compactifications of reductive groups, Sb. Math. 194 (2003), 589-616 Zbl1074.14043MR1992080
- Th. Vust, Plongements d’espaces symétriques algébriques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 165-195 Zbl0728.14041MR1076251
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.