Normality and non-normality of group compactifications in simple projective spaces

Paolo Bravi[1]; Jacopo Gandini[1]; Andrea Maffei[1]; Alessandro Ruzzi[1]

  • [1] Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 6, page 2435-2461
  • ISSN: 0373-0956

Abstract

top
Given an irreducible representation V of a complex simply connected semisimple algebraic group G we consider the closure X of the image of G in ( End ( V ) ) . We determine for which V the variety X is normal and for which V is smooth.

How to cite

top

Bravi, Paolo, et al. "Normality and non-normality of group compactifications in simple projective spaces." Annales de l’institut Fourier 61.6 (2011): 2435-2461. <http://eudml.org/doc/219727>.

@article{Bravi2011,
abstract = {Given an irreducible representation $V$ of a complex simply connected semisimple algebraic group $G$ we consider the closure $X$ of the image of $G$ in $\mathbb\{P\}(\text\{End\}(V))$. We determine for which $V$ the variety $X$ is normal and for which $V$ is smooth.},
affiliation = {Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY; Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY; Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY; Dip.to di Matematica Università di Roma “La Sapienza” P.le A. Moro, 5 00185 ROMA ITALY},
author = {Bravi, Paolo, Gandini, Jacopo, Maffei, Andrea, Ruzzi, Alessandro},
journal = {Annales de l’institut Fourier},
keywords = {semisimple algebraic groups; group compactifications; projective representations; wonderful varieties; symmetric spaces},
language = {eng},
number = {6},
pages = {2435-2461},
publisher = {Association des Annales de l’institut Fourier},
title = {Normality and non-normality of group compactifications in simple projective spaces},
url = {http://eudml.org/doc/219727},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Bravi, Paolo
AU - Gandini, Jacopo
AU - Maffei, Andrea
AU - Ruzzi, Alessandro
TI - Normality and non-normality of group compactifications in simple projective spaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2435
EP - 2461
AB - Given an irreducible representation $V$ of a complex simply connected semisimple algebraic group $G$ we consider the closure $X$ of the image of $G$ in $\mathbb{P}(\text{End}(V))$. We determine for which $V$ the variety $X$ is normal and for which $V$ is smooth.
LA - eng
KW - semisimple algebraic groups; group compactifications; projective representations; wonderful varieties; symmetric spaces
UR - http://eudml.org/doc/219727
ER -

References

top
  1. N. Bourbaki, Éléments de mathématique, 1337 (1968), Hermann Paris Zbl0186.33001MR453824
  2. M. Brion, Variétés sphériques et théorie de Mori, Duke Math. J. 72 (1993), 369-404 Zbl0821.14029MR1248677
  3. R. Chirivì, C. De Concini, A. Maffei, On normality of cones over symmetric varieties, Tohoku Math. J. (2) 58 (2006), 599-616 Zbl1141.14033MR2297202
  4. R. Chirivì, A. Maffei, Projective normality of complete symmetric varieties, Duke Math. J. 122 (2004), 93-123 Zbl1064.14058MR2046808
  5. C. De Concini, Normality and non normality of certain semigroups and orbit closures, Algebraic transformation groups and algebraic varieties 132 (2004), 15-35, Springer, Berlin Zbl1058.22013MR2090668
  6. C. De Concini, C. Procesi, Complete symmetric varieties, Invariant Theory 996 (1983), 1-44, Springer, Berlin Zbl0581.14041
  7. S.S. Kannan, Projective normality of the wonderful compactification of semisimple adjoint groups, Math. Z. 239 (2002), 673-682 Zbl0997.14012MR1902056
  8. F. Knop, The Luna-Vust theory of spherical embeddings, Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989) (1991), 225-249, Manoj Prakashan, Madras Zbl0812.20023MR1131314
  9. F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, DMV Sem. 13 (1989), 63-75 Zbl0722.14032MR1044585
  10. A. Ruzzi, Smooth projective symmetric varieties with Picard number equal to one Zbl1213.14092
  11. J.R. Stembridge, The partial order of dominant weights, Adv. Math. 136 (1998), 340-364 Zbl0916.06001MR1626860
  12. D.A. Timashev, Equivariant compactifications of reductive groups, Sb. Math. 194 (2003), 589-616 Zbl1074.14043MR1992080
  13. Th. Vust, Plongements d’espaces symétriques algébriques: une classification, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17 (1990), 165-195 Zbl0728.14041MR1076251

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.