-stability of mKdV multi-kinks
- [1] Departamento de Ingeniería Matemática y CMM, Universidad de Chile, Casilla 170-3, Correo 3, Santiago Chile
Journées Équations aux dérivées partielles (2011)
- page 1-16
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topMuñoz, Claudio. "$H^1$-stability of mKdV multi-kinks." Journées Équations aux dérivées partielles (2011): 1-16. <http://eudml.org/doc/219731>.
@article{Muñoz2011,
abstract = {We describe some recent results concerning the nonlinear $L^2$-stability of multi-solitons of the Korteweg-de Vries equation [4], and $H^1$-stability of multi-kinks of the modified Korteweg-de Vries [49]. The proof of both results is closely linked to stability properties for solitons of the integrable Gardner equation, which have been considered by Martel, Merle and Tsai [41, 40].},
affiliation = {Departamento de Ingeniería Matemática y CMM, Universidad de Chile, Casilla 170-3, Correo 3, Santiago Chile},
author = {Muñoz, Claudio},
journal = {Journées Équations aux dérivées partielles},
keywords = {KdV equation; modified KdV equation; Gardner equation; integrability; multi-soliton; multi-kink; stability; asymptotic stability; Gardner transform},
language = {eng},
month = {6},
pages = {1-16},
publisher = {Groupement de recherche 2434 du CNRS},
title = {$H^1$-stability of mKdV multi-kinks},
url = {http://eudml.org/doc/219731},
year = {2011},
}
TY - JOUR
AU - Muñoz, Claudio
TI - $H^1$-stability of mKdV multi-kinks
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 16
AB - We describe some recent results concerning the nonlinear $L^2$-stability of multi-solitons of the Korteweg-de Vries equation [4], and $H^1$-stability of multi-kinks of the modified Korteweg-de Vries [49]. The proof of both results is closely linked to stability properties for solitons of the integrable Gardner equation, which have been considered by Martel, Merle and Tsai [41, 40].
LA - eng
KW - KdV equation; modified KdV equation; Gardner equation; integrability; multi-soliton; multi-kink; stability; asymptotic stability; Gardner transform
UR - http://eudml.org/doc/219731
ER -
References
top- M. Ablowitz, and P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. Zbl0762.35001MR1149378
- M. Ablowitz, D. Kaup, A. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. Zbl0408.35068MR450815
- M. Ablowitz, and H. Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. x+425 pp. Zbl0472.35002MR642018
- M. A. Alejo, C. Muñoz, and L. Vega, The Gardner equation and the -stability of the -soliton solutions of the Korteweg-de Vries equation, to appear in Transactions of the AMS. Zbl1278.35209
- T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A 328, (1972) 153–183. MR338584
- H. Berestycki, and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rat. Mech. Anal. 82 (1983), 313–345. Zbl0533.35029MR695535
- F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets, Orbital stability of the black soliton to the Gross-Pitaevskii equation, Indiana Univ. Math. J. 57 (2008), no. 6, 2611–2642. . Zbl1171.35012MR2482993
- J.L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London 411 (1987), 395–412. Zbl0648.76005MR897729
- J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. Zbl0787.35098MR1215780
- K.W. Chow, R.H.J Grimshaw, and E. Ding, Interactions of breathers and solitons in the extended Korteweg-de Vries equation, Wave Motion 43 (2005) 158–166. Zbl1231.35196MR2186925
- M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293. Zbl1048.35101MR2018661
- J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T.Tao, Sharp global well-posedness for KdV and modified KdV on and , J. Amer. Math. Soc. 16 (2003), no. 3, 705–749 (electronic). Zbl1025.35025MR1969209
- S. Cuccagna, On asymptotic stability in 3D of kinks for the model, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2581–2614. Zbl1138.35062MR2373326
- T. Dauxois, and M. Peyrard, Physics of solitons, Cambridge University Press, 2006. Zbl1192.35001
- E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., Am. Math. Soc., Providence, R. I., 1974, pp. 143–156. Zbl0353.70028MR336014
- C.S. Gardner, M.D. Kruskal, and R. Miura, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9, no. 8 (1968), 1204–1209. Zbl0283.35019MR252826
- P. Gérard, and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. (9) 91 (2009), no. 2, 178–210. Zbl1232.35152MR2498754
- F. Gesztesy, and B. Simon, Constructing solutions of the mKdV-equation, J. Funct. Anal. 89 (1990), no. 1, 53–60. Zbl0711.35121MR1040955
- F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV-equation, Trans. AMS 324 (1991), no. 2, 465–525. Zbl0728.35106MR1029000
- M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal. 74 (1987), 160–197. Zbl0656.35122MR901236
- H. Grosse, Solitons of the modified KdV equation, Lett. Math. Phys. 8 (1984), 313-319. Zbl0557.35117MR759630
- H. Grosse, New solitons connected to the Dirac equation, Phys. Rep. 134 (1986), 297–304. MR832137
- R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. Zbl1168.35423
- D. B. Henry, J.F. Perez; and W. F. Wreszinski, Stability Theory for Solitary-Wave Solutions of Scalar Field Equations, Comm. Math. Phys. 85, 351–361(1982). Zbl0546.35062MR678151
- T. Kappeler, and P. Topalov, Global fold structure of the Miura map on , Int. Math. Res. Not. 2004, no. 39, 2039–2068. Zbl1076.35111MR2062735
- C.E. Kenig, and Y. Martel, Global well-posedness in the energy space for a modified KP II equation via the Miura transform, Trans. Amer. Math. Soc. 358 no. 6, pp. 2447–2488. Zbl1106.35082MR2204040
- C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. Zbl0808.35128MR1211741
- C.E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617–633. Zbl1034.35145MR1813239
- E. Kopylova, and A. I. Komech, On Asymptotic Stability of Kink for Relativistic Ginzburg-Landau Equations, to appear in Arch. Rat. Mech. Anal. Zbl1256.35146MR2835867
- D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of stationary waves, Philos. Mag. Ser. 5, 39 (1895), 422–443. Zbl26.0881.02
- M.D. Kruskal and N.J. Zabusky, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. Zbl1201.35174
- P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. Zbl0162.41103MR235310
- J.H. Maddocks, and R.L. Sachs, On the stability of KdV multi-solitons, Comm. Pure Appl. Math. 46, 867–901 (1993). Zbl0795.35107MR1220540
- Y. Martel, Asymptotic -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. Zbl1090.35158MR2170139
- Y. Martel, and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. Zbl0981.35073MR1826966
- Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005) 55–80. Zbl1064.35171MR2109467
- Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation, preprint arXiv:0709.2672 (2007), to appear in Annals of Mathematics. Zbl1300.37045MR2831108
- Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations, Comm. Math. Phys. 286 (2009), 39–79. Zbl1179.35291MR2470923
- Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation, to appear in Inventiones Mathematicae. Zbl1230.35121MR2772088
- Y. Martel, and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. Zbl1153.35068MR2385662
- Y. Martel, F. Merle and T. P. Tsai, Stability and asymptotic stability in the energy space of the sum of solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002) 347–373. Zbl1017.35098MR1946336
- F. Merle; and L. Vega, stability of solitons for KdV equation, Int. Math. Res. Not. 2003, no. 13, 735–753. Zbl1022.35061MR1949297
- R.M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, no. 8 (1968), 1202–1204. Zbl0283.35018MR252825
- R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. Zbl0333.35021MR404890
- T. Mizumachi, and D. Pelinovsky, Bäcklund transformation and -stability of NLS solitons, preprint. Zbl1239.35148
- T. Mizumachi, and N. Tzvetkov, Stability of the line soliton of the KP–II equation under periodic transverse perturbations, preprint. Zbl1233.35174MR2885592
- C. Muñoz, On the inelastic 2-soliton collision for gKdV equations with general nonlinearity, Int. Math. Research Notices (2010) 2010 (9): 1624–1719. Zbl1198.35234MR2643578
- C. Muñoz, -stability of multi-solitons, Séminaire EDP et Applications, École Polythecnique, France, Janvier 2011 http://www.dim.uchile.cl/~cmunoz.
- C. Muñoz, The Gardner equation and the stability of multi-kink solutions of the mKdV equation, preprint arXiv:1106.0648. Zbl1336.35313
- R.L. Pego, and M.I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164, 305–349 (1994). Zbl0805.35117MR1289328
- Soffer, A.; Weinstein, M. I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math. 136 (1999), no. 1, 9–74. Zbl0910.35107MR1681113
- B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. xviii+357 pp. Zbl0765.47023MR1219537
- M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39, (1986) 51—68. Zbl0594.35005MR820338
- M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. Zbl0583.35028MR783974
- M.V. Wickerhauser, Inverse scattering for the heat operator and evolutions in variables, Comm. Math. Phys. 108 (1987), 67–89. Zbl0633.35070MR872141
- P. E. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. Zbl0987.35001MR1831831
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.