H 1 -stability of mKdV multi-kinks

Claudio Muñoz[1]

  • [1] Departamento de Ingeniería Matemática y CMM, Universidad de Chile, Casilla 170-3, Correo 3, Santiago Chile

Journées Équations aux dérivées partielles (2011)

  • page 1-16
  • ISSN: 0752-0360

Abstract

top
We describe some recent results concerning the nonlinear L 2 -stability of multi-solitons of the Korteweg-de Vries equation [4], and H 1 -stability of multi-kinks of the modified Korteweg-de Vries [49]. The proof of both results is closely linked to stability properties for solitons of the integrable Gardner equation, which have been considered by Martel, Merle and Tsai [41, 40].

How to cite

top

Muñoz, Claudio. "$H^1$-stability of mKdV multi-kinks." Journées Équations aux dérivées partielles (2011): 1-16. <http://eudml.org/doc/219731>.

@article{Muñoz2011,
abstract = {We describe some recent results concerning the nonlinear $L^2$-stability of multi-solitons of the Korteweg-de Vries equation [4], and $H^1$-stability of multi-kinks of the modified Korteweg-de Vries [49]. The proof of both results is closely linked to stability properties for solitons of the integrable Gardner equation, which have been considered by Martel, Merle and Tsai [41, 40].},
affiliation = {Departamento de Ingeniería Matemática y CMM, Universidad de Chile, Casilla 170-3, Correo 3, Santiago Chile},
author = {Muñoz, Claudio},
journal = {Journées Équations aux dérivées partielles},
keywords = {KdV equation; modified KdV equation; Gardner equation; integrability; multi-soliton; multi-kink; stability; asymptotic stability; Gardner transform},
language = {eng},
month = {6},
pages = {1-16},
publisher = {Groupement de recherche 2434 du CNRS},
title = {$H^1$-stability of mKdV multi-kinks},
url = {http://eudml.org/doc/219731},
year = {2011},
}

TY - JOUR
AU - Muñoz, Claudio
TI - $H^1$-stability of mKdV multi-kinks
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 16
AB - We describe some recent results concerning the nonlinear $L^2$-stability of multi-solitons of the Korteweg-de Vries equation [4], and $H^1$-stability of multi-kinks of the modified Korteweg-de Vries [49]. The proof of both results is closely linked to stability properties for solitons of the integrable Gardner equation, which have been considered by Martel, Merle and Tsai [41, 40].
LA - eng
KW - KdV equation; modified KdV equation; Gardner equation; integrability; multi-soliton; multi-kink; stability; asymptotic stability; Gardner transform
UR - http://eudml.org/doc/219731
ER -

References

top
  1. M. Ablowitz, and P. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, London Mathematical Society Lecture Note Series, 149. Cambridge University Press, Cambridge, 1991. Zbl0762.35001MR1149378
  2. M. Ablowitz, D. Kaup, A. Newell, and H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies in Appl. Math. 53 (1974), no. 4, 249–315. Zbl0408.35068MR450815
  3. M. Ablowitz, and H. Segur, Solitons and the inverse scattering transform, SIAM Studies in Applied Mathematics, 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa., 1981. x+425 pp. Zbl0472.35002MR642018
  4. M. A. Alejo, C. Muñoz, and L. Vega, The Gardner equation and the L 2 -stability of the N -soliton solutions of the Korteweg-de Vries equation, to appear in Transactions of the AMS. Zbl1278.35209
  5. T.B. Benjamin, The stability of solitary waves, Proc. Roy. Soc. London A 328, (1972) 153–183. MR338584
  6. H. Berestycki, and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rat. Mech. Anal. 82 (1983), 313–345. Zbl0533.35029MR695535
  7. F. Béthuel, P. Gravejat, J.-C. Saut, and D. Smets, Orbital stability of the black soliton to the Gross-Pitaevskii equation, Indiana Univ. Math. J. 57 (2008), no. 6, 2611–2642. . Zbl1171.35012MR2482993
  8. J.L. Bona, P. Souganidis and W. Strauss, Stability and instability of solitary waves of Korteweg-de Vries type, Proc. Roy. Soc. London 411 (1987), 395–412. Zbl0648.76005MR897729
  9. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV equation, Geom. Funct. Anal. 3 (1993), no. 3, 209-262. Zbl0787.35098MR1215780
  10. K.W. Chow, R.H.J Grimshaw, and E. Ding, Interactions of breathers and solitons in the extended Korteweg-de Vries equation, Wave Motion 43 (2005) 158–166. Zbl1231.35196MR2186925
  11. M. Christ, J. Colliander, and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations, Amer. J. Math. 125 (2003), no. 6, 1235–1293. Zbl1048.35101MR2018661
  12. J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T.Tao, Sharp global well-posedness for KdV and modified KdV on and 𝕋 , J. Amer. Math. Soc. 16 (2003), no. 3, 705–749 (electronic). Zbl1025.35025MR1969209
  13. S. Cuccagna, On asymptotic stability in 3D of kinks for the φ 4 model, Trans. Amer. Math. Soc. 360 (2008), no. 5, 2581–2614. Zbl1138.35062MR2373326
  14. T. Dauxois, and M. Peyrard, Physics of solitons, Cambridge University Press, 2006. Zbl1192.35001
  15. E. Fermi, J. Pasta and S. Ulam, Studies of nonlinear problems I, Los Alamos Report LA1940 (1955); reproduced in Nonlinear Wave Motion, A.C. Newell, ed., Am. Math. Soc., Providence, R. I., 1974, pp. 143–156. Zbl0353.70028MR336014
  16. C.S. Gardner, M.D. Kruskal, and R. Miura, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion, J. Math. Phys. 9, no. 8 (1968), 1204–1209. Zbl0283.35019MR252826
  17. P. Gérard, and Z. Zhang, Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl. (9) 91 (2009), no. 2, 178–210. Zbl1232.35152MR2498754
  18. F. Gesztesy, and B. Simon, Constructing solutions of the mKdV-equation, J. Funct. Anal. 89 (1990), no. 1, 53–60. Zbl0711.35121MR1040955
  19. F. Gesztesy, W. Schweiger, and B. Simon, Commutation methods applied to the mKdV-equation, Trans. AMS 324 (1991), no. 2, 465–525. Zbl0728.35106MR1029000
  20. M. Grillakis, J. Shatah, and W. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal. 74 (1987), 160–197. Zbl0656.35122MR901236
  21. H. Grosse, Solitons of the modified KdV equation, Lett. Math. Phys. 8 (1984), 313-319. Zbl0557.35117MR759630
  22. H. Grosse, New solitons connected to the Dirac equation, Phys. Rep. 134 (1986), 297–304. MR832137
  23. R. Hirota, Exact solution of the Korteweg-de Vries equation for multiple collisions of solitons, Phys. Rev. Lett., 27 (1971), 1192–1194. Zbl1168.35423
  24. D. B. Henry, J.F. Perez; and W. F. Wreszinski, Stability Theory for Solitary-Wave Solutions of Scalar Field Equations, Comm. Math. Phys. 85, 351–361(1982). Zbl0546.35062MR678151
  25. T. Kappeler, and P. Topalov, Global fold structure of the Miura map on L 2 ( 𝕋 ) , Int. Math. Res. Not. 2004, no. 39, 2039–2068. Zbl1076.35111MR2062735
  26. C.E. Kenig, and Y. Martel, Global well-posedness in the energy space for a modified KP II equation via the Miura transform, Trans. Amer. Math. Soc. 358 no. 6, pp. 2447–2488. Zbl1106.35082MR2204040
  27. C.E. Kenig, G. Ponce and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math. 46, (1993) 527–620. Zbl0808.35128MR1211741
  28. C.E. Kenig, G. Ponce and L. Vega, On the ill-posedness of some canonical dispersive equations, Duke Math. J. 106 (2001), no. 3, 617–633. Zbl1034.35145MR1813239
  29. E. Kopylova, and A. I. Komech, On Asymptotic Stability of Kink for Relativistic Ginzburg-Landau Equations, to appear in Arch. Rat. Mech. Anal. Zbl1256.35146MR2835867
  30. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of stationary waves, Philos. Mag. Ser. 5, 39 (1895), 422–443. Zbl26.0881.02
  31. M.D. Kruskal and N.J. Zabusky, Interaction of “solitons” in a collisionless plasma and recurrence of initial states, Phys. Rev. Lett. 15 (1965), 240–243. Zbl1201.35174
  32. P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21, (1968) 467–490. Zbl0162.41103MR235310
  33. J.H. Maddocks, and R.L. Sachs, On the stability of KdV multi-solitons, Comm. Pure Appl. Math. 46, 867–901 (1993). Zbl0795.35107MR1220540
  34. Y. Martel, Asymptotic N -soliton-like solutions of the subcritical and critical generalized Korteweg-de Vries equations, Amer. J. Math. 127 (2005), no. 5, 1103–1140. Zbl1090.35158MR2170139
  35. Y. Martel, and F. Merle, Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal. 157 (2001), no. 3, 219–254. Zbl0981.35073MR1826966
  36. Y. Martel and F. Merle, Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity 18 (2005) 55–80. Zbl1064.35171MR2109467
  37. Y. Martel and F. Merle, Description of two soliton collision for the quartic gKdV equation, preprint arXiv:0709.2672 (2007), to appear in Annals of Mathematics. Zbl1300.37045MR2831108
  38. Y. Martel and F. Merle, Stability of two soliton collision for nonintegrable gKdV equations, Comm. Math. Phys. 286 (2009), 39–79. Zbl1179.35291MR2470923
  39. Y. Martel and F. Merle, Inelastic interaction of nearly equal solitons for the quartic gKdV equation, to appear in Inventiones Mathematicae. Zbl1230.35121MR2772088
  40. Y. Martel, and F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann. 341 (2008), no. 2, 391–427. Zbl1153.35068MR2385662
  41. Y. Martel, F. Merle and T. P. Tsai, Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Comm. Math. Phys. 231 (2002) 347–373. Zbl1017.35098MR1946336
  42. F. Merle; and L. Vega, L 2 stability of solitons for KdV equation, Int. Math. Res. Not. 2003, no. 13, 735–753. Zbl1022.35061MR1949297
  43. R.M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation, J. Math. Phys. 9, no. 8 (1968), 1202–1204. Zbl0283.35018MR252825
  44. R.M. Miura, The Korteweg–de Vries equation: a survey of results, SIAM Review 18, (1976) 412–459. Zbl0333.35021MR404890
  45. T. Mizumachi, and D. Pelinovsky, Bäcklund transformation and L 2 -stability of NLS solitons, preprint. Zbl1239.35148
  46. T. Mizumachi, and N. Tzvetkov, Stability of the line soliton of the KP–II equation under periodic transverse perturbations, preprint. Zbl1233.35174MR2885592
  47. C. Muñoz, On the inelastic 2-soliton collision for gKdV equations with general nonlinearity, Int. Math. Research Notices (2010) 2010 (9): 1624–1719. Zbl1198.35234MR2643578
  48. C. Muñoz, L 2 -stability of multi-solitons, Séminaire EDP et Applications, École Polythecnique, France, Janvier 2011 http://www.dim.uchile.cl/~cmunoz. 
  49. C. Muñoz, The Gardner equation and the stability of multi-kink solutions of the mKdV equation, preprint arXiv:1106.0648. Zbl1336.35313
  50. R.L. Pego, and M.I. Weinstein, Asymptotic stability of solitary waves, Comm. Math. Phys. 164, 305–349 (1994). Zbl0805.35117MR1289328
  51. Soffer, A.; Weinstein, M. I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math. 136 (1999), no. 1, 9–74. Zbl0910.35107MR1681113
  52. B. Thaller, The Dirac equation, Texts and Monographs in Physics. Springer-Verlag, Berlin, 1992. xviii+357 pp. Zbl0765.47023MR1219537
  53. M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure. Appl. Math. 39, (1986) 51—68. Zbl0594.35005MR820338
  54. M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal. 16 (1985), no. 3, 472–491. Zbl0583.35028MR783974
  55. M.V. Wickerhauser, Inverse scattering for the heat operator and evolutions in 2 + 1 variables, Comm. Math. Phys. 108 (1987), 67–89. Zbl0633.35070MR872141
  56. P. E. Zhidkov, Korteweg-de Vries and Nonlinear Schrödinger Equations: Qualitative Theory, Lecture Notes in Mathematics, vol. 1756, Springer-Verlag, Berlin, 2001. Zbl0987.35001MR1831831

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.