The Chow ring of the stack of cyclic covers of the projective line

Damiano Fulghesu[1]; Filippo Viviani[2]

  • [1] Université de Strasbourg et CNRS 7 IRMA, UMR 7501 7, rue René Descartes 67084 Strasbourg Cedex (France)
  • [2] Università degli Studi di Roma Tre Dipartimento di Matematica Largo San Leonardo Murialdo 1 00146 Roma (Italy)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 6, page 2249-2275
  • ISSN: 0373-0956

Abstract

top
In this paper we compute the integral Chow ring of the stack of smooth uniform cyclic covers of the projective line and we give explicit generators.

How to cite

top

Fulghesu, Damiano, and Viviani, Filippo. "The Chow ring of the stack of cyclic covers of the projective line." Annales de l’institut Fourier 61.6 (2011): 2249-2275. <http://eudml.org/doc/219733>.

@article{Fulghesu2011,
abstract = {In this paper we compute the integral Chow ring of the stack of smooth uniform cyclic covers of the projective line and we give explicit generators.},
affiliation = {Université de Strasbourg et CNRS 7 IRMA, UMR 7501 7, rue René Descartes 67084 Strasbourg Cedex (France); Università degli Studi di Roma Tre Dipartimento di Matematica Largo San Leonardo Murialdo 1 00146 Roma (Italy)},
author = {Fulghesu, Damiano, Viviani, Filippo},
journal = {Annales de l’institut Fourier},
keywords = {Intersection theory; cyclic covers; algebraic stacks; moduli stacks of curves; equivariant intersection theory; algebraic backstabbing},
language = {eng},
number = {6},
pages = {2249-2275},
publisher = {Association des Annales de l’institut Fourier},
title = {The Chow ring of the stack of cyclic covers of the projective line},
url = {http://eudml.org/doc/219733},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Fulghesu, Damiano
AU - Viviani, Filippo
TI - The Chow ring of the stack of cyclic covers of the projective line
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2249
EP - 2275
AB - In this paper we compute the integral Chow ring of the stack of smooth uniform cyclic covers of the projective line and we give explicit generators.
LA - eng
KW - Intersection theory; cyclic covers; algebraic stacks; moduli stacks of curves; equivariant intersection theory; algebraic backstabbing
UR - http://eudml.org/doc/219733
ER -

References

top
  1. Enrico Arbarello, Maurizio Cornalba, The Picard groups of the moduli spaces of curves, Topology 26 (1987), 153-171 Zbl0625.14014MR895568
  2. Alessandro Arsie, Angelo Vistoli, Stacks of cyclic covers of projective spaces, Compos. Math. 140 (2004), 647-666 Zbl1169.14301MR2041774
  3. M. Bolognesi, A. Vistoli, Stacks of trigonal curves 
  4. P. Deligne, D. Mumford, The irreducibility of the space of curves of given genus, Inst. Hautes Études Sci. Publ. Math. (1969), 75-109 Zbl0181.48803MR262240
  5. Dan Edidin, D. Fulghesu, The integral Chow ring of the stack of hyperelliptic curves of even genus, Math. Research Letter (2008), 10001-10015 Zbl1174.14006MR2480558
  6. Dan Edidin, William Graham, Equivariant intersection theory, Invent. Math. 131 (1998), 595-634 Zbl0940.14003MR1614555
  7. Carel Faber, Chow rings of moduli spaces of curves, Ann. of Math. (2) 132 (1990), 331-419 Zbl0721.14013MR1070600
  8. Sergey Gorchinskiy, Filippo Viviani, Picard group of moduli of hyperelliptic curves, Math. Z. 258 (2008), 319-331 Zbl1132.14011MR2357639
  9. E. Izadi, The Chow ring of the moduli space of curves of genus , The moduli space of curves (Texel Island, 1994) 129 (1995), 267-304, Birkhäuser Boston, Boston, MA Zbl0862.14016MR1363060
  10. David Mumford, Geometric invariant theory, (1965), Springer-Verlag, Berlin Zbl0147.39304MR214602
  11. David Mumford, Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, Vol. II 36 (1983), 271-328, Birkhäuser Boston, Boston, MA Zbl0554.14008MR717614
  12. Rahul Pandharipande, Equivariant Chow rings of , and , J. Reine Angew. Math. 496 (1998), 131-148 Zbl0905.14026MR1605814
  13. Burt Totaro, The Chow ring of a classifying space, Algebraic -theory (Seattle, WA, 1997) 67 (1999), 249-281, Amer. Math. Soc., Providence, RI Zbl0967.14005MR1743244
  14. Gabriele Vezzosi, On the Chow ring of the classifying stack of , J. Reine Angew. Math. 523 (2000), 1-54 Zbl0967.14006MR1762954
  15. Angelo Vistoli, The Chow ring of , Invent. Math. 131 (1998), 635-644 MR1614559

NotesEmbed ?

top

You must be logged in to post comments.