Simons Type Equation in and and Applications
Márcio Henrique Batista da Silva[1]
- [1] Universidade Federal de Alagoas Instituto de Matemática CEP: 57072-900 Maceió - Alagoas (Brazil)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 4, page 1299-1322
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBatista da Silva, Márcio Henrique. "Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications." Annales de l’institut Fourier 61.4 (2011): 1299-1322. <http://eudml.org/doc/219743>.
@article{BatistadaSilva2011,
abstract = {Let $\Sigma ^2$ be an immersed surface in $M^2(c)\times \mathbb\{R\}$ with constant mean curvature. We consider the traceless Weingarten operator $\phi $ associated to the second fundamental form of the surface, and we introduce a tensor $S$, related to the Abresch-Rosenberg quadratic differential form. We establish equations of Simons type for both $\phi $ and $S$. By using these equations, we characterize some immersions for which $|\phi |$ or $|S|$ is appropriately bounded.},
affiliation = {Universidade Federal de Alagoas Instituto de Matemática CEP: 57072-900 Maceió - Alagoas (Brazil)},
author = {Batista da Silva, Márcio Henrique},
journal = {Annales de l’institut Fourier},
keywords = {Surface with constant mean curvature; Simons type equation; Codazzi’s equation; constant mean curvature; Abresch-Rosenberg differential form},
language = {eng},
number = {4},
pages = {1299-1322},
publisher = {Association des Annales de l’institut Fourier},
title = {Simons Type Equation in $\mathbb\{S\}^\{2\}\times \mathbb\{R\}$ and $\mathbb\{H\}^2\times \mathbb\{R\}$ and Applications},
url = {http://eudml.org/doc/219743},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Batista da Silva, Márcio Henrique
TI - Simons Type Equation in $\mathbb{S}^{2}\times \mathbb{R}$ and $\mathbb{H}^2\times \mathbb{R}$ and Applications
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1299
EP - 1322
AB - Let $\Sigma ^2$ be an immersed surface in $M^2(c)\times \mathbb{R}$ with constant mean curvature. We consider the traceless Weingarten operator $\phi $ associated to the second fundamental form of the surface, and we introduce a tensor $S$, related to the Abresch-Rosenberg quadratic differential form. We establish equations of Simons type for both $\phi $ and $S$. By using these equations, we characterize some immersions for which $|\phi |$ or $|S|$ is appropriately bounded.
LA - eng
KW - Surface with constant mean curvature; Simons type equation; Codazzi’s equation; constant mean curvature; Abresch-Rosenberg differential form
UR - http://eudml.org/doc/219743
ER -
References
top- U. Abresch, H. Rosenberg, A Hopf differential for constant mean curvature surfaces in and , Acta Math. 193 (2004), 141-174 Zbl1078.53053MR2134864
- H. Alencar, M. do Carmo, Hypersurfaces with constant mean curvature in Spheres, Proc. of the AMS 120 (1994), 1223-1229 Zbl0802.53017MR1172943
- P. Bérard, Simons Equation Revisited, Anais Acad. Brasil. Ciências 66 (1994), 397-403 Zbl0815.53007
- S.Y. Cheng, Eigenfunctions and Nodal Sets, Commentarii Math. Helv. 51 (1976), 43-55 Zbl0334.35022MR397805
- B. Daniel, Isometric immersions into 3-dimensional homogeneous manifolds, Commentarii Math. Helv. 82 (2007), 87-131 Zbl1123.53029MR2296059
- W.Y. Hsiang, W.T. Hsiang, On the uniqueness of isoperimetric solutions and imbedded soap bubbles in noncompact symmetric spaces I, Invent. Math 98 (1989), 39-58 Zbl0682.53057MR1010154
- R. Pedrosa, M. Ritoré, Isoperimetric domains in the Riemannian product of a cicle with a simply connected space form and applications to free boundary problems, Indiana Univ. Math. J. 48 (1999), 1357-1394 Zbl0956.53049MR1757077
- J. Simons, Minimal varieties in Riemannian manifolds, Indiana Univ. Math. J. 88 (1968), 62-105 Zbl0181.49702MR233295
- R. Souam, E. Toubiana, Totally umbilic surfaces in homogeneous 3-manifolds Zbl1170.53030
- S.T. Yau, Harmonic functions on complete Riemannian manifolds, Comm.Pure and Appl. Math. 28 (1975), 201-228 Zbl0291.31002MR431040
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.