On the free surface Navier-Stokes equation in the inviscid limit

Frederic Rousset[1]

  • [1] IRMAR, Université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France

Journées Équations aux dérivées partielles (2011)

  • page 1-14
  • ISSN: 0752-0360

Abstract

top
The aim of this note is to present recent results obtained with N. Masmoudi [29] on the free surface Navier-Stokes equation with small viscosity.

How to cite

top

Rousset, Frederic. "On the free surface Navier-Stokes equation in the inviscid limit." Journées Équations aux dérivées partielles (2011): 1-14. <http://eudml.org/doc/219752>.

@article{Rousset2011,
abstract = {The aim of this note is to present recent results obtained with N. Masmoudi [29] on the free surface Navier-Stokes equation with small viscosity.},
affiliation = {IRMAR, Université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France},
author = {Rousset, Frederic},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-14},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On the free surface Navier-Stokes equation in the inviscid limit},
url = {http://eudml.org/doc/219752},
year = {2011},
}

TY - JOUR
AU - Rousset, Frederic
TI - On the free surface Navier-Stokes equation in the inviscid limit
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 14
AB - The aim of this note is to present recent results obtained with N. Masmoudi [29] on the free surface Navier-Stokes equation with small viscosity.
LA - eng
UR - http://eudml.org/doc/219752
ER -

References

top
  1. Alazard, T., Burq, N. and Zuily C. On the Water Waves Equations with Surface Tension, Duke Math. J. 158 3 (2011), 413-499. Zbl1258.35043MR2805065
  2. Alinhac, S. Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Differential Equations 14, 2(1989), 173–230. Zbl0692.35063MR976971
  3. Bardos, C. Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40 (1972), 769–790. Zbl0249.35070MR333488
  4. Bardos, C., and Rauch, J. Maximal positive boundary value problems as limits of singular perturbation problems. Trans. Amer. Math. Soc. 270, 2 (1982), 377–408. Zbl0485.35010MR645322
  5. Beale, J. T. The initial value problem for the Navier-Stokes equations with a free surface.Comm. Pure Appl. Math. 34, 3 (1981), 359–392. Zbl0464.76028MR611750
  6. Beirão da Veiga, H. Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal. 5, 4 (2006), 907–918. Zbl1132.35067MR2246015
  7. Beirão da Veiga, H., and Crispo, F. Concerning the W k , p -inviscid limit for 3-d flows under a slip boundary condition. J. Math. Fluid Mech. Zbl1270.35333
  8. Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup. (4) 14, 2(1981). Zbl0495.35024MR631751
  9. Christodoulou, D. and Lindblad, H. On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53, 12(2000), 1536–1602. Zbl1031.35116MR1780703
  10. Clopeau, T., Mikelić, A., and Robert, R. On the vanishing viscosity limit for the 2 D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11, 6 (1998), 1625–1636. Zbl0911.76014MR1660366
  11. Coutand, D. and Shkoller S., Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007),829–930. Zbl1123.35038MR2291920
  12. Gérard-Varet, D. and Dormy, E. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23, 2(2010), 591–609 Zbl1197.35204MR2601044
  13. Germain, P., Masmoudi, N. and Shatah, J. Global solutions for the gravity water waves in dimension 3, arXiv:0906.5343. Zbl1241.35003
  14. Gisclon, M., and Serre, D. Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319, 4 (1994), 377–382. Zbl0808.35075MR1289315
  15. Grenier, E. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. 53, 9(2000),1067–1091. Zbl1048.35081MR1761409
  16. Grenier, E., and Guès, O. Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143, 1 (1998), 110–146. Zbl0896.35078MR1604888
  17. Grenier, E., and Rousset, F. Stability of one-dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54, 11 (2001), 1343–1385. Zbl1026.35015MR1846801
  18. Guès, O. Problème mixte hyperbolique quasi-linéaire caractéristique. Comm. Partial Differential Equations 15, 5 (1990), 595–645. Zbl0712.35061MR1070840
  19. Guès, O., Métivier, G., Williams, M. and Zumbrun, K., Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations. Arch. Ration. Mech. Anal. 197, 1(2010), 1–87. Zbl1217.35136MR2646814
  20. Guo, Y. and Nguyen T. A note on the Prandtl boundary layers, arXiv:1011.0130. Zbl1232.35126MR2849481
  21. Hörmander, L. Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math. (2) 83 (1966), 129–209. Zbl0132.07402MR233064
  22. Iftimie, D., and Planas, G. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 4 (2006), 899–918. Zbl1169.35365MR2214949
  23. Iftimie, D., and Sueur, F. Viscous boundary layers for the Navier-Stokes equations with the navier slip conditions. Arch. Rat. Mech. Analysis, available online. Zbl1229.35184
  24. Kelliher, J. P. Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38, 1 (2006), 210–232 (electronic). Zbl1302.35295MR2217315
  25. Lannes, D.Well-posedness of the water-waves equations, Journal AMS 18 (2005) 605-654. Zbl1069.35056MR2138139
  26. Lindblad, H. Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Comm. Pure Appl. Math. 56. 2(2003), 153–197. Zbl1025.35017MR1934619
  27. Lindblad, H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2) 162. 1 (2005), 109–194. Zbl1095.35021MR2178961
  28. Masmoudi, N. and Rousset F. Uniform regularity for the Navier-Stokes equation with Navier boundary condition, preprint 2010, arXiv:1008.1678. Zbl1286.76026MR2885569
  29. Masmoudi, N. and Rousset F. Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equation, preprint 2011. 
  30. Métivier, G. and Zumbrun K., Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc. 175 2005, 826. Zbl1074.35066MR2130346
  31. Rousset, F. Characteristic boundary layers in real vanishing viscosity limits. J. Differential Equations 210, 1 (2005), 25–64. Zbl1060.35015MR2114123
  32. Sammartino, M., and Caflisch, R. E. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys. 192, 2 (1998), 433–461. Zbl0913.35102MR1617542
  33. Shatah, J. and Zeng, C. Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008),698–744. Zbl1174.76001MR2388661
  34. Tani, A., and Tanaka, N. Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Rational Mech. Anal. 130, 4(1995), 303–314. Zbl0844.76025MR1346360
  35. Tartakoff, D. S. Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21 (1971/72), 1113–1129. Zbl0235.35019MR440182
  36. Temam, R., and Wang, X. Boundary layers associated with incompressible Navier-Stokes equations: the noncharacteristic boundary case. J. Differential Equations 179, 2 (2002), 647–686. Zbl0997.35042MR1885683
  37. Xiao, Y., and Xin, Z. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. 60, 7 (2007), 1027–1055. Zbl1117.35063MR2319054
  38. Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc.,12 (1999), 445–495. Zbl0921.76017MR1641609
  39. Wu, S. Global wellposedness of the 3-D full water wave problem. Invent. Math. 184, 1(2011), 125–220. Zbl1221.35304MR2782254

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.