On the free surface Navier-Stokes equation in the inviscid limit
- [1] IRMAR, Université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France
Journées Équations aux dérivées partielles (2011)
- page 1-14
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topRousset, Frederic. "On the free surface Navier-Stokes equation in the inviscid limit." Journées Équations aux dérivées partielles (2011): 1-14. <http://eudml.org/doc/219752>.
@article{Rousset2011,
abstract = {The aim of this note is to present recent results obtained with N. Masmoudi [29] on the free surface Navier-Stokes equation with small viscosity.},
affiliation = {IRMAR, Université de Rennes 1, campus de Beaulieu, 35042 Rennes cedex, France},
author = {Rousset, Frederic},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-14},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On the free surface Navier-Stokes equation in the inviscid limit},
url = {http://eudml.org/doc/219752},
year = {2011},
}
TY - JOUR
AU - Rousset, Frederic
TI - On the free surface Navier-Stokes equation in the inviscid limit
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 14
AB - The aim of this note is to present recent results obtained with N. Masmoudi [29] on the free surface Navier-Stokes equation with small viscosity.
LA - eng
UR - http://eudml.org/doc/219752
ER -
References
top- Alazard, T., Burq, N. and Zuily C. On the Water Waves Equations with Surface Tension, Duke Math. J. 158 3 (2011), 413-499. Zbl1258.35043MR2805065
- Alinhac, S. Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels. Comm. Partial Differential Equations 14, 2(1989), 173–230. Zbl0692.35063MR976971
- Bardos, C. Existence et unicité de la solution de l’équation d’Euler en dimension deux. J. Math. Anal. Appl. 40 (1972), 769–790. Zbl0249.35070MR333488
- Bardos, C., and Rauch, J. Maximal positive boundary value problems as limits of singular perturbation problems. Trans. Amer. Math. Soc. 270, 2 (1982), 377–408. Zbl0485.35010MR645322
- Beale, J. T. The initial value problem for the Navier-Stokes equations with a free surface.Comm. Pure Appl. Math. 34, 3 (1981), 359–392. Zbl0464.76028MR611750
- Beirão da Veiga, H. Vorticity and regularity for flows under the Navier boundary condition. Commun. Pure Appl. Anal. 5, 4 (2006), 907–918. Zbl1132.35067MR2246015
- Beirão da Veiga, H., and Crispo, F. Concerning the -inviscid limit for 3-d flows under a slip boundary condition. J. Math. Fluid Mech. Zbl1270.35333
- Bony, J.-M. Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup. (4) 14, 2(1981). Zbl0495.35024MR631751
- Christodoulou, D. and Lindblad, H. On the motion of the free surface of a liquid. Comm. Pure Appl. Math. 53, 12(2000), 1536–1602. Zbl1031.35116MR1780703
- Clopeau, T., Mikelić, A., and Robert, R. On the vanishing viscosity limit for the incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity 11, 6 (1998), 1625–1636. Zbl0911.76014MR1660366
- Coutand, D. and Shkoller S., Well-posedness of the free-surface incompressible Euler equations with or without surface tension, J. Amer. Math. Soc., 20 (2007),829–930. Zbl1123.35038MR2291920
- Gérard-Varet, D. and Dormy, E. On the ill-posedness of the Prandtl equation. J. Amer. Math. Soc. 23, 2(2010), 591–609 Zbl1197.35204MR2601044
- Germain, P., Masmoudi, N. and Shatah, J. Global solutions for the gravity water waves in dimension 3, arXiv:0906.5343. Zbl1241.35003
- Gisclon, M., and Serre, D. Étude des conditions aux limites pour un système strictement hyberbolique via l’approximation parabolique. C. R. Acad. Sci. Paris Sér. I Math. 319, 4 (1994), 377–382. Zbl0808.35075MR1289315
- Grenier, E. On the nonlinear instability of Euler and Prandtl equations. Comm. Pure Appl. Math. 53, 9(2000),1067–1091. Zbl1048.35081MR1761409
- Grenier, E., and Guès, O. Boundary layers for viscous perturbations of noncharacteristic quasilinear hyperbolic problems. J. Differential Equations 143, 1 (1998), 110–146. Zbl0896.35078MR1604888
- Grenier, E., and Rousset, F. Stability of one-dimensional boundary layers by using Green’s functions. Comm. Pure Appl. Math. 54, 11 (2001), 1343–1385. Zbl1026.35015MR1846801
- Guès, O. Problème mixte hyperbolique quasi-linéaire caractéristique. Comm. Partial Differential Equations 15, 5 (1990), 595–645. Zbl0712.35061MR1070840
- Guès, O., Métivier, G., Williams, M. and Zumbrun, K., Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations. Arch. Ration. Mech. Anal. 197, 1(2010), 1–87. Zbl1217.35136MR2646814
- Guo, Y. and Nguyen T. A note on the Prandtl boundary layers, arXiv:1011.0130. Zbl1232.35126MR2849481
- Hörmander, L. Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math. (2) 83 (1966), 129–209. Zbl0132.07402MR233064
- Iftimie, D., and Planas, G. Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions. Nonlinearity 19, 4 (2006), 899–918. Zbl1169.35365MR2214949
- Iftimie, D., and Sueur, F. Viscous boundary layers for the Navier-Stokes equations with the navier slip conditions. Arch. Rat. Mech. Analysis, available online. Zbl1229.35184
- Kelliher, J. P. Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. 38, 1 (2006), 210–232 (electronic). Zbl1302.35295MR2217315
- Lannes, D.Well-posedness of the water-waves equations, Journal AMS 18 (2005) 605-654. Zbl1069.35056MR2138139
- Lindblad, H. Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. Comm. Pure Appl. Math. 56. 2(2003), 153–197. Zbl1025.35017MR1934619
- Lindblad, H. Well-posedness for the motion of an incompressible liquid with free surface boundary. Ann. of Math. (2) 162. 1 (2005), 109–194. Zbl1095.35021MR2178961
- Masmoudi, N. and Rousset F. Uniform regularity for the Navier-Stokes equation with Navier boundary condition, preprint 2010, arXiv:1008.1678. Zbl1286.76026MR2885569
- Masmoudi, N. and Rousset F. Uniform regularity and vanishing viscosity limit for the free surface Navier-Stokes equation, preprint 2011.
- Métivier, G. and Zumbrun K., Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Amer. Math. Soc. 175 2005, 826. Zbl1074.35066MR2130346
- Rousset, F. Characteristic boundary layers in real vanishing viscosity limits. J. Differential Equations 210, 1 (2005), 25–64. Zbl1060.35015MR2114123
- Sammartino, M., and Caflisch, R. E. Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations. Comm. Math. Phys. 192, 2 (1998), 433–461. Zbl0913.35102MR1617542
- Shatah, J. and Zeng, C. Geometry and a priori estimates for free boundary problems of the Euler equation, Comm. Pure Appl. Math., 61 (2008),698–744. Zbl1174.76001MR2388661
- Tani, A., and Tanaka, N. Large-time existence of surface waves in incompressible viscous fluids with or without surface tension. Arch. Rational Mech. Anal. 130, 4(1995), 303–314. Zbl0844.76025MR1346360
- Tartakoff, D. S. Regularity of solutions to boundary value problems for first order systems. Indiana Univ. Math. J. 21 (1971/72), 1113–1129. Zbl0235.35019MR440182
- Temam, R., and Wang, X. Boundary layers associated with incompressible Navier-Stokes equations: the noncharacteristic boundary case. J. Differential Equations 179, 2 (2002), 647–686. Zbl0997.35042MR1885683
- Xiao, Y., and Xin, Z. On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition. Comm. Pure Appl. Math. 60, 7 (2007), 1027–1055. Zbl1117.35063MR2319054
- Wu, S. Well-posedness in Sobolev spaces of the full water wave problem in 3-D, J. Amer. Math. Soc.,12 (1999), 445–495. Zbl0921.76017MR1641609
- Wu, S. Global wellposedness of the 3-D full water wave problem. Invent. Math. 184, 1(2011), 125–220. Zbl1221.35304MR2782254
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.