Quantitative Isoperimetric Inequalities on the Real Line
- [1] Institut de Mathématiques de Toulouse (UMR CNRS 5219) Université de Toulouse III - Paul Sabatier 118, route de Narbonne, 31062 Toulouse, France.
Annales mathématiques Blaise Pascal (2011)
- Volume: 18, Issue: 2, page 251-271
- ISSN: 1259-1734
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, (2000), The Clarendon Press Oxford University Press, New York Zbl0957.49001MR1857292
- S. G. Bobkov, An isoperimetric problem on the line, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 216 (1994), 5-9, 161 Zbl0868.60014MR1327260
- C. Borell, The Brunn-Minkowski inequality in Gauss space, Invent. Math. 30 (1975), 207-216 Zbl0292.60004MR399402
- A. Cianchi, N. Fusco, F. Maggi, A. Pratelli, On the isoperimetric deficit in Gauss space, American Journal of Mathematics 133 (2011), 131-186 Zbl1219.28005MR2752937
- N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. of Math. (2) 168 (2008), 941-980 Zbl1187.52009MR2456887
- V. N. Sudakov, B. S. Cirel{'}son, Extremal properties of half-spaces for spherically invariant measures, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974), 14-24, 165 Zbl0351.28015MR365680