The divisor problem for binary cubic forms
Tim Browning[1]
- [1] School of Mathematics University of Bristol Bristol BS8 1TW United Kingdom
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 3, page 579-602
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBrowning, Tim. "The divisor problem for binary cubic forms." Journal de Théorie des Nombres de Bordeaux 23.3 (2011): 579-602. <http://eudml.org/doc/219762>.
@article{Browning2011,
abstract = {We investigate the average order of the divisor function at values of binary cubic forms that are reducible over $\mathbb\{Q\}$ and discuss some applications.},
affiliation = {School of Mathematics University of Bristol Bristol BS8 1TW United Kingdom},
author = {Browning, Tim},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {divisor function; cubic form; linear factors; sum; ternary additive divisor problem},
language = {eng},
month = {11},
number = {3},
pages = {579-602},
publisher = {Société Arithmétique de Bordeaux},
title = {The divisor problem for binary cubic forms},
url = {http://eudml.org/doc/219762},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Browning, Tim
TI - The divisor problem for binary cubic forms
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/11//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 3
SP - 579
EP - 602
AB - We investigate the average order of the divisor function at values of binary cubic forms that are reducible over $\mathbb{Q}$ and discuss some applications.
LA - eng
KW - divisor function; cubic form; linear factors; sum; ternary additive divisor problem
UR - http://eudml.org/doc/219762
ER -
References
top- V. V. Batyrev and Yu. I. Manin, Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann. 286 (1990), 27–43. Zbl0679.14008MR1032922
- R. de la Bretèche and T. D. Browning, Binary linear forms as sums of two squares. Compositio Math. 144 (2008), 1375–1402. Zbl1234.11132MR2474314
- R. de la Bretèche and T. D. Browning, Le problème des diviseurs pour des formes binaires de degré . J. reine angew. Math. 646 (2010), 1–44. Zbl1204.11158MR2719554
- S. Daniel, On the divisor-sum problem for binary forms. J. reine angew. Math. 507 (1999), 107–129. Zbl0913.11041MR1670278
- W. Duke, J. B. Friedlander and H. Iwaniec, A quadratic divisor problem. Inventiones Math. 115 (1994), 209–217. Zbl0791.11049MR1258903
- T. Estermann, Über die Darstellung einer Zahl als Differenz von swei Produkten. J. reine angew. Math. 164 (1931), 173–182. Zbl0001.20302
- G. Greaves, On the divisor-sum problem for binary cubic forms. Acta Arith. 17 (1970), 1–28. Zbl0198.37903MR263761
- A. E. Ingham, Some asymptotic formulae in the theory of numbers. J. London Math. Soc. 2 (1927), 202–208. Zbl53.0157.01
- Y. Motohashi, The binary additive divisor problem. Ann. Sci. École Norm. Sup. 27 (1994), 529–572. Zbl0819.11038MR1296556
- M. Robbiani, On the number of rational points of bounded height on smooth bilinear hypersurfaces in biprojective space. J. London Math. Soc. 63 (2001), 33–51. Zbl1020.11046MR1801715
- C. V. Spencer, The Manin Conjecture for . J. Number Theory 129 (2009), 1505–1521. Zbl1171.11054MR2521490
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.