Holonomy, twisting cochains and characteristic classes

G. Sharygin[1]

  • [1] Institute of Theoretical and Experimental Physics 25 ul. B. Cheremushkinskaya, Moscow, 117259 Russia.

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: 2, page 295-366
  • ISSN: 0240-2963

Abstract

top
This paper contains a description of various geometric constructions associated with fibre bundles, given in terms of important algebraic object, the “twisting cochain". Our examples include the Chern-Weil classes, the holonomy representation and the so-called cyclic Chern character of Bismut and others (see [2, 11, 27]), also called the Bismut’s class. The later example is the principal one for us, since we are motivated by the attempt to find an algebraic approach to the Witten’s index formula. We also give several examples of the twisting cochain associated with a given principal bundle. In particular, our approach allows us to obtain explicit formulas for the Chern classes and for an analogue of the cyclic Chern character in the terms of the glueing functions of the principal bundle. We discuss few modifications of this construction. We hope that this approach can turn fruitful for the investigations of the Witten index formula.

How to cite

top

Sharygin, G.. "Holonomy, twisting cochains and characteristic classes." Annales de la faculté des sciences de Toulouse Mathématiques 20.2 (2011): 295-366. <http://eudml.org/doc/219763>.

@article{Sharygin2011,
abstract = {This paper contains a description of various geometric constructions associated with fibre bundles, given in terms of important algebraic object, the “twisting cochain". Our examples include the Chern-Weil classes, the holonomy representation and the so-called cyclic Chern character of Bismut and others (see [2, 11, 27]), also called the Bismut’s class. The later example is the principal one for us, since we are motivated by the attempt to find an algebraic approach to the Witten’s index formula. We also give several examples of the twisting cochain associated with a given principal bundle. In particular, our approach allows us to obtain explicit formulas for the Chern classes and for an analogue of the cyclic Chern character in the terms of the glueing functions of the principal bundle. We discuss few modifications of this construction. We hope that this approach can turn fruitful for the investigations of the Witten index formula.},
affiliation = {Institute of Theoretical and Experimental Physics 25 ul. B. Cheremushkinskaya, Moscow, 117259 Russia.},
author = {Sharygin, G.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {index; Dirac operator; vector bundle; monodromy; gauge; characteristic class; free loop space; cyclic Chern character; Bismut's class; twisting cochain; principal bundle; Getzler-Jones-Petrack map; Getzler-Jones classes},
language = {eng},
month = {4},
number = {2},
pages = {295-366},
publisher = {Université Paul Sabatier, Toulouse},
title = {Holonomy, twisting cochains and characteristic classes},
url = {http://eudml.org/doc/219763},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Sharygin, G.
TI - Holonomy, twisting cochains and characteristic classes
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - 2
SP - 295
EP - 366
AB - This paper contains a description of various geometric constructions associated with fibre bundles, given in terms of important algebraic object, the “twisting cochain". Our examples include the Chern-Weil classes, the holonomy representation and the so-called cyclic Chern character of Bismut and others (see [2, 11, 27]), also called the Bismut’s class. The later example is the principal one for us, since we are motivated by the attempt to find an algebraic approach to the Witten’s index formula. We also give several examples of the twisting cochain associated with a given principal bundle. In particular, our approach allows us to obtain explicit formulas for the Chern classes and for an analogue of the cyclic Chern character in the terms of the glueing functions of the principal bundle. We discuss few modifications of this construction. We hope that this approach can turn fruitful for the investigations of the Witten index formula.
LA - eng
KW - index; Dirac operator; vector bundle; monodromy; gauge; characteristic class; free loop space; cyclic Chern character; Bismut's class; twisting cochain; principal bundle; Getzler-Jones-Petrack map; Getzler-Jones classes
UR - http://eudml.org/doc/219763
ER -

References

top
  1. Anderson (D.W.).— A generalization of the Eilenberg-Moore spectral sequence, Bulletin of the Amer. Math. Soc. 78 Number 5, p. 784-786 (1972). Zbl0255.55012MR310889
  2. Bismut (J.-M.).— Le théorème d’Atiyah-Singer pour les opérateurs elliptiques classiques: une approche probabiliste C. R. Acad. Sci. Paris Sér. I Math., 297 No.8, p. 481-484 (1983). Zbl0539.58034MR736249
  3. Bott (R.), Tu (L.W.).— Differential Forms in Algebraic Topology, Springer-Verlag, Berlin-Heiderberg-New York, (1982). Zbl0496.55001MR658304
  4. Bott (R.), Segal (G.).— The Cohomology of the Vector Fields on a Manifold, Topology, 16, p. 285-298 (1977). Zbl0387.57012MR645730
  5. Bousfield (A. K.), Gugenheim (V. K. A. M.).— On P L de Rham theory and rational homotopy type, Memoirs of AMS, 8, p. 179 (1976). Zbl0338.55008MR425956
  6. Bousfield (A. K.), Kan (D. M.).— Homotopy limits, completions and localizations, Lect. Notes in Math. No.304, Springer-verlag, Berlin-Heidelberg-New York (1972). Zbl0259.55004MR365573
  7. Brown (E.).— Twisted tensor products, Ann. of Math, 69, p. 223-246 (1959). Zbl0199.58201MR105687
  8. Chen (K.T.).— Iterated integrals of differential forms and loop space homology, Ann. Math. 97, p. 217-246 (1973). Zbl0227.58003MR380859
  9. Chen (K.T.).— Extension of C -function algebra by integrals and Malcev completion of π 1 , Adv. Math. 23, p. 181-210 (1977). Zbl0345.58003MR458461
  10. Dupont (J.-L.).— Simplicial de Rham cohomology and characteristic classes of flat bundles. Topology 15, p. 233-245 (1976) Zbl0331.55012MR413122
  11. Getzler (E.), Jones (J.D.S.), Petrack (S.).— Differential forms on loop space and the cyclic bar complex, Topology 30, p. 339-371 (1991). Zbl0729.58004MR1113683
  12. Goerss (P.G.), Jardine (J.F.).— Simplicial homotopy theory, Birkhäuser (1997). MR1711612
  13. Grothendieck (A.).— On the De Rham cohomology of algebraic varieties, Publ. math. de l’IHES, tome 29, p. 95-103 (1966). Zbl0145.17602MR199194
  14. Jones (J.D.S.).— Cyclic homology and equivariant homology, Invent. Math. 87, p. 403-423 (1987). Zbl0644.55005MR870737
  15. Kan (D. M.).— A combinatorial definition of homotopy groups, Ann. of Math. 67, p. 282-312 (1958). Zbl0091.36901MR111032
  16. McLane (S.).— Homology, Springer-Verlag, Berlin-Heidelberg-New York (1963). Zbl0328.18009MR156879
  17. May (J.P.).— Simplicial methods in algebraic topology, U.Chicago (1967). 
  18. Onishchik (A.L.).— Topology of transitive transformation groups, Fizmatlit, Moscow (1995), in Russian Zbl0841.57001MR1379333
  19. Segal (G.).— Categories and cohomology theories, Topology 13, p. 293-312 (1974). Zbl0284.55016MR353298
  20. Smirnov (V.A.).— Functor D for twisted tensor products, Mat. Zametki 20, p. 465-472 (1976), in Russian. Zbl0341.55019MR431170
  21. Smirnov (V.A.).— Functor D and the strong homotopy, Mat. Zametki 21, p. 557-564 (1977), in Russian. Zbl0354.55017MR488051
  22. Smirnov (V.A.).— Simplicial and Operad Methods in Algebraic Topology, AMS, Transl. Math. Monogr. 198 (2001). Zbl0964.55001MR1811110
  23. Sharygin (G.I.).— Local formulae for characteristic classes of a principal G l n -bundle, Matematicheskii Sbornik 199:10, p. 127-158 (2008), in Russian; translated in: Sbornik: Mathematics 199:10 p. 1547-1577 (2008). Zbl1160.57025MR2473815
  24. Shih (W.T.).— Homology des espaces fibrés, Publications Math. de l’IHES 13, p. 93-176 (1962). Zbl0105.16903
  25. Sweedler (M.E.).— Hopf algebras, W. A. Benjamin, New-York (1969). Zbl0194.32901MR252485
  26. Woronowicz (S.L.).— Differential calculus on compact matrix pseudogroups (Quantum Groups) Comm. Math. Phys. 122 Nr 1, p. 125-170 (1989). Zbl0751.58042MR994499
  27. Zamboni (L.Q.).— A Chern character in cyclic homology, Trans. of AMS 331, p. 157-163 (1992). Zbl0762.55004MR1044967

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.