Frobenius contraction of G -modules

Michel Gros[1]; Masaharu Kaneda[2]

  • [1] Université de Rennes I IRMAR Campus de Beaulieu 35042 Rennes cedex (France)
  • [2] Osaka City University Department of Mathematics 3-3-138 Sugimoto Sumiyoshi-ku Osaka 558-8585 (Japan)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 6, page 2507-2542
  • ISSN: 0373-0956

Abstract

top
Let G be a simply connected semisimple algebraic group over an algebraically closed field 𝕜 of positive characteristic. We will give a new proof of the Frobenius splitting of the flag variety of G and of its G -equivariant nature. The key tool is a newly found splitting of the Frobenius endomorphism on the algebra of distributions of G allowing us to “untwist” the structure of G -modules.

How to cite

top

Gros, Michel, and Kaneda, Masaharu. "Contraction par Frobenius de $G$-modules." Annales de l’institut Fourier 61.6 (2011): 2507-2542. <http://eudml.org/doc/219768>.

@article{Gros2011,
abstract = {Soit $G$ un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos $\mathbb\{k\}$ de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de $G$ ainsi que de la nature $G$-équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de $G$ qui permet de « détordre » la structure des $G$-modules.},
affiliation = {Université de Rennes I IRMAR Campus de Beaulieu 35042 Rennes cedex (France); Osaka City University Department of Mathematics 3-3-138 Sugimoto Sumiyoshi-ku Osaka 558-8585 (Japan)},
author = {Gros, Michel, Kaneda, Masaharu},
journal = {Annales de l’institut Fourier},
keywords = {Frobenius splitting; flag variety; Schubert variety; distribution algebra},
language = {fre},
number = {6},
pages = {2507-2542},
publisher = {Association des Annales de l’institut Fourier},
title = {Contraction par Frobenius de $G$-modules},
url = {http://eudml.org/doc/219768},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Gros, Michel
AU - Kaneda, Masaharu
TI - Contraction par Frobenius de $G$-modules
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2507
EP - 2542
AB - Soit $G$ un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos $\mathbb{k}$ de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de $G$ ainsi que de la nature $G$-équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de $G$ qui permet de « détordre » la structure des $G$-modules.
LA - fre
KW - Frobenius splitting; flag variety; Schubert variety; distribution algebra
UR - http://eudml.org/doc/219768
ER -

References

top
  1. Henning Haahr Andersen, Patrick Polo, Ke Xin Wen, Representations of quantum algebras, Invent. Math. 104 (1991), 1-59 Zbl0724.17012MR1094046
  2. Michel Brion, Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser Boston Inc., Boston, MA Zbl1072.14066MR2107324
  3. Edward Cline, Brian Parshall, Leonard Scott, Cohomology, hyperalgebras, and representations, J. Algebra 63 (1980), 98-123 Zbl0434.20024MR568566
  4. T. J. Enright, N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), 1-15 Zbl0429.17012MR563362
  5. Michel Gros, A splitting of the Frobenius morphism on the whole algebra of distributions of S L 2  Zbl1287.14008
  6. Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
  7. James E. Humphreys, Introduction to Lie algebras and representation theory, (1972), Springer-Verlag, New York Zbl0447.17001MR323842
  8. Jens Carsten Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonn. Math. Schr. (1973) Zbl0288.17004MR401935
  9. Jens Carsten Jantzen, Lectures on quantum groups, 6 (1996), American Mathematical Society, Providence, RI Zbl0842.17012MR1359532
  10. Jens Carsten Jantzen, Representations of algebraic groups, 107 (2003), American Mathematical Society, Providence, RI Zbl1034.20041MR2015057
  11. Masaharu Kaneda, The Frobenius morphism of Schubert schemes, J. Algebra 174 (1995), 473-488 Zbl0867.14023MR1334220
  12. Masaharu Kaneda, Cohomology of infinitesimal quantum algebras, J. Algebra 226 (2000), 250-282 Zbl0981.17013MR1749888
  13. Shrawan Kumar, Peter Littelmann, Frobenius splitting in characteristic zero and the quantum Frobenius map, J. Pure Appl. Algebra 152 (2000), 201-216 Zbl0977.17008MR1783996
  14. Shrawan Kumar, Peter Littelmann, Algebraization of Frobenius splitting via quantum groups, Ann. of Math. (2) 155 (2002), 491-551 Zbl1078.14074MR1906594
  15. Peter Littelmann, Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc. 11 (1998), 551-567 Zbl0915.20022MR1603862
  16. G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) 82 (1989), 59-77, Amer. Math. Soc., Providence, RI Zbl0665.20022MR982278
  17. George Lusztig, Quantum groups at roots of 1 , Geom. Dedicata 35 (1990), 89-113 Zbl0714.17013MR1066560
  18. George Lusztig, Introduction to quantum groups, 110 (1993), Birkhäuser Boston Inc., Boston, MA Zbl1246.17018MR1227098
  19. Olivier Mathieu, Filtrations of G -modules, Ann. Sci. École Norm. Sup. (4) 23 (1990), 625-644 Zbl0748.20026MR1072820
  20. Kevin McGerty, Generalized q -Schur algebras and quantum Frobenius, Adv. Math. 214 (2007), 116-131 Zbl1189.17016MR2348025
  21. V. B. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), 27-40 Zbl0601.14043MR799251
  22. Mitsuhiro Takeuchi, Tangent coalgebras and hyperalgebras. I, Japan. J. Math. 42 (1974), 1-143 Zbl0309.14042MR389896
  23. Nanhua Xi, Irreducible modules of quantized enveloping algebras at roots of 1 , Publ. Res. Inst. Math. Sci. 32 (1996), 235-276 Zbl0874.17013MR1382803

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.