Frobenius contraction of -modules
Michel Gros[1]; Masaharu Kaneda[2]
- [1] Université de Rennes I IRMAR Campus de Beaulieu 35042 Rennes cedex (France)
- [2] Osaka City University Department of Mathematics 3-3-138 Sugimoto Sumiyoshi-ku Osaka 558-8585 (Japan)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 6, page 2507-2542
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGros, Michel, and Kaneda, Masaharu. "Contraction par Frobenius de $G$-modules." Annales de l’institut Fourier 61.6 (2011): 2507-2542. <http://eudml.org/doc/219768>.
@article{Gros2011,
abstract = {Soit $G$ un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos $\mathbb\{k\}$ de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de $G$ ainsi que de la nature $G$-équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de $G$ qui permet de « détordre » la structure des $G$-modules.},
affiliation = {Université de Rennes I IRMAR Campus de Beaulieu 35042 Rennes cedex (France); Osaka City University Department of Mathematics 3-3-138 Sugimoto Sumiyoshi-ku Osaka 558-8585 (Japan)},
author = {Gros, Michel, Kaneda, Masaharu},
journal = {Annales de l’institut Fourier},
keywords = {Frobenius splitting; flag variety; Schubert variety; distribution algebra},
language = {fre},
number = {6},
pages = {2507-2542},
publisher = {Association des Annales de l’institut Fourier},
title = {Contraction par Frobenius de $G$-modules},
url = {http://eudml.org/doc/219768},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Gros, Michel
AU - Kaneda, Masaharu
TI - Contraction par Frobenius de $G$-modules
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2507
EP - 2542
AB - Soit $G$ un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos $\mathbb{k}$ de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de $G$ ainsi que de la nature $G$-équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de $G$ qui permet de « détordre » la structure des $G$-modules.
LA - fre
KW - Frobenius splitting; flag variety; Schubert variety; distribution algebra
UR - http://eudml.org/doc/219768
ER -
References
top- Henning Haahr Andersen, Patrick Polo, Ke Xin Wen, Representations of quantum algebras, Invent. Math. 104 (1991), 1-59 Zbl0724.17012MR1094046
- Michel Brion, Shrawan Kumar, Frobenius splitting methods in geometry and representation theory, 231 (2005), Birkhäuser Boston Inc., Boston, MA Zbl1072.14066MR2107324
- Edward Cline, Brian Parshall, Leonard Scott, Cohomology, hyperalgebras, and representations, J. Algebra 63 (1980), 98-123 Zbl0434.20024MR568566
- T. J. Enright, N. R. Wallach, Notes on homological algebra and representations of Lie algebras, Duke Math. J. 47 (1980), 1-15 Zbl0429.17012MR563362
- Michel Gros, A splitting of the Frobenius morphism on the whole algebra of distributions of Zbl1287.14008
- Robin Hartshorne, Algebraic geometry, (1977), Springer-Verlag, New York Zbl0531.14001MR463157
- James E. Humphreys, Introduction to Lie algebras and representation theory, (1972), Springer-Verlag, New York Zbl0447.17001MR323842
- Jens Carsten Jantzen, Darstellungen halbeinfacher algebraischer Gruppen und zugeordnete kontravariante Formen, Bonn. Math. Schr. (1973) Zbl0288.17004MR401935
- Jens Carsten Jantzen, Lectures on quantum groups, 6 (1996), American Mathematical Society, Providence, RI Zbl0842.17012MR1359532
- Jens Carsten Jantzen, Representations of algebraic groups, 107 (2003), American Mathematical Society, Providence, RI Zbl1034.20041MR2015057
- Masaharu Kaneda, The Frobenius morphism of Schubert schemes, J. Algebra 174 (1995), 473-488 Zbl0867.14023MR1334220
- Masaharu Kaneda, Cohomology of infinitesimal quantum algebras, J. Algebra 226 (2000), 250-282 Zbl0981.17013MR1749888
- Shrawan Kumar, Peter Littelmann, Frobenius splitting in characteristic zero and the quantum Frobenius map, J. Pure Appl. Algebra 152 (2000), 201-216 Zbl0977.17008MR1783996
- Shrawan Kumar, Peter Littelmann, Algebraization of Frobenius splitting via quantum groups, Ann. of Math. (2) 155 (2002), 491-551 Zbl1078.14074MR1906594
- Peter Littelmann, Contracting modules and standard monomial theory for symmetrizable Kac-Moody algebras, J. Amer. Math. Soc. 11 (1998), 551-567 Zbl0915.20022MR1603862
- G. Lusztig, Modular representations and quantum groups, Classical groups and related topics (Beijing, 1987) 82 (1989), 59-77, Amer. Math. Soc., Providence, RI Zbl0665.20022MR982278
- George Lusztig, Quantum groups at roots of , Geom. Dedicata 35 (1990), 89-113 Zbl0714.17013MR1066560
- George Lusztig, Introduction to quantum groups, 110 (1993), Birkhäuser Boston Inc., Boston, MA Zbl1246.17018MR1227098
- Olivier Mathieu, Filtrations of -modules, Ann. Sci. École Norm. Sup. (4) 23 (1990), 625-644 Zbl0748.20026MR1072820
- Kevin McGerty, Generalized -Schur algebras and quantum Frobenius, Adv. Math. 214 (2007), 116-131 Zbl1189.17016MR2348025
- V. B. Mehta, A. Ramanathan, Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2) 122 (1985), 27-40 Zbl0601.14043MR799251
- Mitsuhiro Takeuchi, Tangent coalgebras and hyperalgebras. I, Japan. J. Math. 42 (1974), 1-143 Zbl0309.14042MR389896
- Nanhua Xi, Irreducible modules of quantized enveloping algebras at roots of , Publ. Res. Inst. Math. Sci. 32 (1996), 235-276 Zbl0874.17013MR1382803
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.