The Tate pairing for Abelian varieties over finite fields
Peter Bruin[1]
- [1] Université Paris-Sud 11 Département de Mathématiques Bâtiment 425 91405 Orsay cedex France
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 2, page 323-328
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topBruin, Peter. "The Tate pairing for Abelian varieties over finite fields." Journal de Théorie des Nombres de Bordeaux 23.2 (2011): 323-328. <http://eudml.org/doc/219774>.
@article{Bruin2011,
abstract = {In this expository note, we describe an arithmetic pairing associated to an isogeny between Abelian varieties over a finite field. We show that it generalises the Frey–Rück pairing, thereby giving a short proof of the perfectness of the latter.},
affiliation = {Université Paris-Sud 11 Département de Mathématiques Bâtiment 425 91405 Orsay cedex France},
author = {Bruin, Peter},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Tate pairing; abelian varieties},
language = {eng},
month = {6},
number = {2},
pages = {323-328},
publisher = {Société Arithmétique de Bordeaux},
title = {The Tate pairing for Abelian varieties over finite fields},
url = {http://eudml.org/doc/219774},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Bruin, Peter
TI - The Tate pairing for Abelian varieties over finite fields
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/6//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 2
SP - 323
EP - 328
AB - In this expository note, we describe an arithmetic pairing associated to an isogeny between Abelian varieties over a finite field. We show that it generalises the Frey–Rück pairing, thereby giving a short proof of the perfectness of the latter.
LA - eng
KW - Tate pairing; abelian varieties
UR - http://eudml.org/doc/219774
ER -
References
top- G. Frey and H.-G. Rück, A remark concerning -divisibility and the discrete logarithm in class groups of curves. Mathematics of Computation 62 (1994), 865–874. Zbl0813.14045MR1218343
- F. Heß, A note on the Tate pairing of curves over finite fields. Archiv der Mathematik 82 (2004), no. 1, 28-32. Zbl1051.11030MR2034467
- E. W. Howe, The Weil pairing and the Hilbert symbol. Mathematische Annalen 305 (1996), 387–392. Zbl0854.11031MR1391223
- S. Lang, Abelian varieties over finite fields. Proceedings of the National Academy of Sciences of the U.S.A. 41 (1955), no. 3, 174–176. Zbl0064.03902MR71115
- S. Lang, Abelian Varieties. Interscience, New York, 1959. Zbl0516.14031MR106225
- S. Lichtenbaum, Duality theorems for curves over -adic fields. Inventiones Mathematicae 7 (1969), 120–136. Zbl0186.26402MR242831
- D. Mumford, Abelian Varieties. Tata Institute of Fundamental Research, Bombay, 1970. Zbl0583.14015MR282985
- E. F. Schaefer, A new proof for the non-degeneracy of the Frey–Rück pairing and a connection to isogenies over the base field. In: T. Shaska (editor), Computational Aspects of Algebraic Curves (Conference held at the University of Idaho, 2005), 1–12. Lecture Notes Series in Computing 13. World Scientific Publishing, Hackensack, NJ, 2005. Zbl1154.14320MR2181869
- J-P. Serre, Corps locaux. Hermann, Paris, 1962. Zbl0137.02601MR354618
- J. Tate, WC-groups over -adic fields. Séminaire Bourbaki, exposé 156. Secretariat mathématique, Paris, 1957. Zbl0091.33701MR105420
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.