The combinatorics of quiver representations

Harm Derksen[1]; Jerzy Weyman[2]

  • [1] University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA)
  • [2] Northeastern University Department of Mathematics Boston MA 02115 (USA)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 3, page 1061-1131
  • ISSN: 0373-0956

Abstract

top
We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically review and develop the necessary methods (exceptional and Schur sequences, orthogonal categories, semi-stable decompositions, GIT quotients for quivers). In an Appendix we include a variant of Belkale’s geometric proof of a conjecture of Fulton that works for arbitrary quivers.

How to cite

top

Derksen, Harm, and Weyman, Jerzy. "The combinatorics of quiver representations." Annales de l’institut Fourier 61.3 (2011): 1061-1131. <http://eudml.org/doc/219793>.

@article{Derksen2011,
abstract = {We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically review and develop the necessary methods (exceptional and Schur sequences, orthogonal categories, semi-stable decompositions, GIT quotients for quivers). In an Appendix we include a variant of Belkale’s geometric proof of a conjecture of Fulton that works for arbitrary quivers.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA); Northeastern University Department of Mathematics Boston MA 02115 (USA)},
author = {Derksen, Harm, Weyman, Jerzy},
journal = {Annales de l’institut Fourier},
keywords = {Quiver representations; Klyachko cone; Littlewood-Richardson coefficients; representations of quivers; rings of semi-invariants},
language = {eng},
number = {3},
pages = {1061-1131},
publisher = {Association des Annales de l’institut Fourier},
title = {The combinatorics of quiver representations},
url = {http://eudml.org/doc/219793},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Derksen, Harm
AU - Weyman, Jerzy
TI - The combinatorics of quiver representations
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 1061
EP - 1131
AB - We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically review and develop the necessary methods (exceptional and Schur sequences, orthogonal categories, semi-stable decompositions, GIT quotients for quivers). In an Appendix we include a variant of Belkale’s geometric proof of a conjecture of Fulton that works for arbitrary quivers.
LA - eng
KW - Quiver representations; Klyachko cone; Littlewood-Richardson coefficients; representations of quivers; rings of semi-invariants
UR - http://eudml.org/doc/219793
ER -

References

top
  1. P. Belkale, Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom. 15 (2006), 133-176 Zbl1090.14014MR2177198
  2. P. Belkale, Geometric proof of a conjecture of Fulton, Advances Math. 216 (2007), 346-357 Zbl1129.14063MR2353260
  3. A. S. Buch, The saturation conjecture (after A. Knutson and T. Tao), With an appendix by William Fulton, Enseign. Math. (2) 46 (2000), 43-60 Zbl0979.20041MR1769536
  4. C. Chindris, Quivers, long exact sequences and Horn type inequalities, J. Algebra 320 (2008), 128-157 Zbl1207.16011MR2417982
  5. C. Chindris, Quivers, long exact sequences and Horn type inequalities II, Glasg. Math. J. 51 (2009), 201-217 Zbl1210.16016MR2500745
  6. C. Chindris, H. Derksen, J. Weyman, Non-log-concave Littlewood-Richardson coefficients, Compos. Math. 43 (2007), 1545-1557 Zbl1184.05136MR2371381
  7. W. Crawley-Boevey, Exceptional sequences of representations of quivers, Canadian Math. Soc. Conf. Proceedings 14 (1993), 117-124 Zbl0828.16012MR1265279
  8. W. Crawley-Boevey, Subrepresentations of general representations of quivers, Bull. London Math. Soc. 28 (1996), 363-366 Zbl0863.16008MR1384823
  9. W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003), 339-352 Zbl1046.15013MR1980997
  10. H. Derksen, A. Schofield, J. Weyman, On the number of subrepresentations of a general quiver representation, J. London Math. Soc. (2) 76 (2007), 135-147 Zbl1146.16007MR2351613
  11. H. Derksen, J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, Journal of the AMS 13 (2000), 467-579 Zbl0993.16011MR1758750
  12. H. Derksen, J. Weyman, On the canonical decomposition of quiver representations, Compositio Math. 133 (2002), 245-265 Zbl1016.16007MR1930979
  13. H. Derksen, J. Weyman, On the Littlewood-Richardson polynomials, J. Algebra 255 (2002), 247-257 Zbl1018.16012MR1935497
  14. H. Derksen, J. Weyman, The combinatorics of quiver representations, (arXiv:math/0608288) Zbl1271.16016MR2110070
  15. W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. 37 (2000), 209-249 Zbl0994.15021MR1754641
  16. L. Hille, Quivers, cones and polytopes, Linear Algebra Appl. 365 (2003), 215-237 Zbl1034.52011MR1987339
  17. L. Hille, José de la Peña, Stable representations of quivers, J. Pure Appl. Algebra 172 (2002), 205-224 Zbl1040.16011MR1906875
  18. A Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 620-630 Zbl0112.01501MR140521
  19. V Kac, Infinite root systems, representations of graphs and Invariant Theory, Invent. Math. 56 (1980), 57-92 Zbl0427.17001MR557581
  20. V Kac, Infinite Root Systems, Representations of Graphs and Invariant Theory II, J. Algebra 78 (1982), 141-162 Zbl0497.17007MR677715
  21. A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford (2) 45 (1994), 515-530 Zbl0837.16005MR1315461
  22. R. C. King, C. Tollu, F. Toumazet, The hive model and the factorisation of Kostka coefficients, Sém. Lothar. Combin. 54A (2005/07) Zbl1178.05101MR2264935
  23. R. C. King, Ch Tollu, F. Toumazet, Factorisation of Littlewood-Richardson coefficients, J. Combin. Theory Ser. A 116 (2009), 314-333 Zbl1207.05214MR2475020
  24. T Klein, The multiplication of Schur-functions and extensions of p -modules, J. London Math. Soc. 43 (1968), 280-284 Zbl0188.09504MR228481
  25. A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1988), 419-445 Zbl0915.14010MR1654578
  26. A. Knutson, T. Tao, The honeycomb model of GL n ( ) tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090 Zbl0944.05097MR1671451
  27. A. Knutson, T. Tao, W. Woodward, The honeycomb model of GL n ( ) tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48 Zbl1043.05111MR2015329
  28. L. Le Bruyn, C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598 Zbl0693.16018MR958897
  29. N. Ressayre, Geometric invariant theory and generalized eigenvalue problem II Zbl1197.14051
  30. N. Ressayre, GIT cones for quivers Zbl1267.14060
  31. N. Ressayre, Geometric invariant theory and the generalized eigenvalue problem, Invent. Math. 180 (2010), 389-441 Zbl1197.14051MR2609246
  32. C. M. Ringel, Representations of K -species and bimodules, J. Algebra 41 (1976), 269-302 Zbl0338.16011MR422350
  33. C. M. Ringel, Tame algebras and integral quadratic forms, 1099 (1984), Springer Zbl0448.16019MR774589
  34. Claus Michael Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Abelian group theory and related topics (Oberwolfach, 1993) 171 (1994), 339-352, Amer. Math. Soc., Providence, RI Zbl0851.16010MR1293154
  35. A. Rudakov, Stability for an abelian category, J. Algebra 197 (1997), 231-245 Zbl0893.18007MR1480783
  36. A. Schofield, Semi-invariants of Quivers, J. London Math. Soc. 43 (1991), 383-395 Zbl0779.16005MR1113382
  37. A. Schofield, General Representations of Quivers, Proc. London Math. Soc. (3) 65 (1992), 46-64 Zbl0795.16008MR1162487
  38. A. Schofield, Birational classification of moduli spaces of representations of quivers, Indag. Math., N.S. 12 (3) (2001), 407-432 Zbl1013.16005MR1914089
  39. A. Schofield, A. van den Bergh, Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math., N.S. 12 (1) (2001), 125-138 Zbl1004.16012MR1908144
  40. R. Vakil, Schubert Induction, Annals of Math. (2) 164 (2006), 489-512 Zbl1115.14043MR2247966
  41. H. Weyl, Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479 Zbl43.0436.01MR1511670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.