The combinatorics of quiver representations
Harm Derksen[1]; Jerzy Weyman[2]
- [1] University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA)
- [2] Northeastern University Department of Mathematics Boston MA 02115 (USA)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 3, page 1061-1131
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topDerksen, Harm, and Weyman, Jerzy. "The combinatorics of quiver representations." Annales de l’institut Fourier 61.3 (2011): 1061-1131. <http://eudml.org/doc/219793>.
@article{Derksen2011,
abstract = {We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically review and develop the necessary methods (exceptional and Schur sequences, orthogonal categories, semi-stable decompositions, GIT quotients for quivers). In an Appendix we include a variant of Belkale’s geometric proof of a conjecture of Fulton that works for arbitrary quivers.},
affiliation = {University of Michigan Department of Mathematics Ann Arbor MI 48109-1043 (USA); Northeastern University Department of Mathematics Boston MA 02115 (USA)},
author = {Derksen, Harm, Weyman, Jerzy},
journal = {Annales de l’institut Fourier},
keywords = {Quiver representations; Klyachko cone; Littlewood-Richardson coefficients; representations of quivers; rings of semi-invariants},
language = {eng},
number = {3},
pages = {1061-1131},
publisher = {Association des Annales de l’institut Fourier},
title = {The combinatorics of quiver representations},
url = {http://eudml.org/doc/219793},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Derksen, Harm
AU - Weyman, Jerzy
TI - The combinatorics of quiver representations
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 3
SP - 1061
EP - 1131
AB - We give a description of faces, of all codimensions, for the cones spanned by the set of weights associated to the rings of semi-invariants of quivers. For a triple flag quiver and its faces of codimension 1 this description reduces to the result of Knutson-Tao-Woodward on the facets of the Klyachko cone. We give new applications to Littlewood-Richardson coefficients, including a product formula for LR-coefficients corresponding to triples of partitions lying on a wall of the Klyachko cone. We systematically review and develop the necessary methods (exceptional and Schur sequences, orthogonal categories, semi-stable decompositions, GIT quotients for quivers). In an Appendix we include a variant of Belkale’s geometric proof of a conjecture of Fulton that works for arbitrary quivers.
LA - eng
KW - Quiver representations; Klyachko cone; Littlewood-Richardson coefficients; representations of quivers; rings of semi-invariants
UR - http://eudml.org/doc/219793
ER -
References
top- P. Belkale, Geometric proofs of Horn and saturation conjectures, J. Algebraic Geom. 15 (2006), 133-176 Zbl1090.14014MR2177198
- P. Belkale, Geometric proof of a conjecture of Fulton, Advances Math. 216 (2007), 346-357 Zbl1129.14063MR2353260
- A. S. Buch, The saturation conjecture (after A. Knutson and T. Tao), With an appendix by William Fulton, Enseign. Math. (2) 46 (2000), 43-60 Zbl0979.20041MR1769536
- C. Chindris, Quivers, long exact sequences and Horn type inequalities, J. Algebra 320 (2008), 128-157 Zbl1207.16011MR2417982
- C. Chindris, Quivers, long exact sequences and Horn type inequalities II, Glasg. Math. J. 51 (2009), 201-217 Zbl1210.16016MR2500745
- C. Chindris, H. Derksen, J. Weyman, Non-log-concave Littlewood-Richardson coefficients, Compos. Math. 43 (2007), 1545-1557 Zbl1184.05136MR2371381
- W. Crawley-Boevey, Exceptional sequences of representations of quivers, Canadian Math. Soc. Conf. Proceedings 14 (1993), 117-124 Zbl0828.16012MR1265279
- W. Crawley-Boevey, Subrepresentations of general representations of quivers, Bull. London Math. Soc. 28 (1996), 363-366 Zbl0863.16008MR1384823
- W. Crawley-Boevey, On matrices in prescribed conjugacy classes with no common invariant subspace and sum zero, Duke Math. J. 118 (2003), 339-352 Zbl1046.15013MR1980997
- H. Derksen, A. Schofield, J. Weyman, On the number of subrepresentations of a general quiver representation, J. London Math. Soc. (2) 76 (2007), 135-147 Zbl1146.16007MR2351613
- H. Derksen, J. Weyman, Semi-invariants of quivers and saturation for Littlewood-Richardson coefficients, Journal of the AMS 13 (2000), 467-579 Zbl0993.16011MR1758750
- H. Derksen, J. Weyman, On the canonical decomposition of quiver representations, Compositio Math. 133 (2002), 245-265 Zbl1016.16007MR1930979
- H. Derksen, J. Weyman, On the Littlewood-Richardson polynomials, J. Algebra 255 (2002), 247-257 Zbl1018.16012MR1935497
- H. Derksen, J. Weyman, The combinatorics of quiver representations, (arXiv:math/0608288) Zbl1271.16016MR2110070
- W. Fulton, Eigenvalues, invariant factors, highest weights, and Schubert calculus, Bull. Amer. Math. Soc. 37 (2000), 209-249 Zbl0994.15021MR1754641
- L. Hille, Quivers, cones and polytopes, Linear Algebra Appl. 365 (2003), 215-237 Zbl1034.52011MR1987339
- L. Hille, José de la Peña, Stable representations of quivers, J. Pure Appl. Algebra 172 (2002), 205-224 Zbl1040.16011MR1906875
- A Horn, Eigenvalues of sums of Hermitian matrices, Pacific J. Math. 12 (1962), 620-630 Zbl0112.01501MR140521
- V Kac, Infinite root systems, representations of graphs and Invariant Theory, Invent. Math. 56 (1980), 57-92 Zbl0427.17001MR557581
- V Kac, Infinite Root Systems, Representations of Graphs and Invariant Theory II, J. Algebra 78 (1982), 141-162 Zbl0497.17007MR677715
- A. D. King, Moduli of representations of finite dimensional algebras, Quart. J. Math. Oxford (2) 45 (1994), 515-530 Zbl0837.16005MR1315461
- R. C. King, C. Tollu, F. Toumazet, The hive model and the factorisation of Kostka coefficients, Sém. Lothar. Combin. 54A (2005/07) Zbl1178.05101MR2264935
- R. C. King, Ch Tollu, F. Toumazet, Factorisation of Littlewood-Richardson coefficients, J. Combin. Theory Ser. A 116 (2009), 314-333 Zbl1207.05214MR2475020
- T Klein, The multiplication of Schur-functions and extensions of -modules, J. London Math. Soc. 43 (1968), 280-284 Zbl0188.09504MR228481
- A. Klyachko, Stable bundles, representation theory and Hermitian operators, Selecta Math. (N.S.) 4 (1988), 419-445 Zbl0915.14010MR1654578
- A. Knutson, T. Tao, The honeycomb model of tensor products. I. Proof of the saturation conjecture, J. Amer. Math. Soc. 12 (1999), 1055-1090 Zbl0944.05097MR1671451
- A. Knutson, T. Tao, W. Woodward, The honeycomb model of tensor products. II. Puzzles determine facets of the Littlewood-Richardson cone, J. Amer. Math. Soc. 17 (2004), 19-48 Zbl1043.05111MR2015329
- L. Le Bruyn, C. Procesi, Semisimple representations of quivers, Trans. Amer. Math. Soc. 317 (1990), 585-598 Zbl0693.16018MR958897
- N. Ressayre, Geometric invariant theory and generalized eigenvalue problem II Zbl1197.14051
- N. Ressayre, GIT cones for quivers Zbl1267.14060
- N. Ressayre, Geometric invariant theory and the generalized eigenvalue problem, Invent. Math. 180 (2010), 389-441 Zbl1197.14051MR2609246
- C. M. Ringel, Representations of -species and bimodules, J. Algebra 41 (1976), 269-302 Zbl0338.16011MR422350
- C. M. Ringel, Tame algebras and integral quadratic forms, 1099 (1984), Springer Zbl0448.16019MR774589
- Claus Michael Ringel, The braid group action on the set of exceptional sequences of a hereditary Artin algebra, Abelian group theory and related topics (Oberwolfach, 1993) 171 (1994), 339-352, Amer. Math. Soc., Providence, RI Zbl0851.16010MR1293154
- A. Rudakov, Stability for an abelian category, J. Algebra 197 (1997), 231-245 Zbl0893.18007MR1480783
- A. Schofield, Semi-invariants of Quivers, J. London Math. Soc. 43 (1991), 383-395 Zbl0779.16005MR1113382
- A. Schofield, General Representations of Quivers, Proc. London Math. Soc. (3) 65 (1992), 46-64 Zbl0795.16008MR1162487
- A. Schofield, Birational classification of moduli spaces of representations of quivers, Indag. Math., N.S. 12 (3) (2001), 407-432 Zbl1013.16005MR1914089
- A. Schofield, A. van den Bergh, Semi-invariants of quivers for arbitrary dimension vectors, Indag. Math., N.S. 12 (1) (2001), 125-138 Zbl1004.16012MR1908144
- R. Vakil, Schubert Induction, Annals of Math. (2) 164 (2006), 489-512 Zbl1115.14043MR2247966
- H. Weyl, Das asymtotische Verteilungsgesetz der Eigenwerte lineare partieller Differentialgleichungen, Math. Ann. 71 (1912), 441-479 Zbl43.0436.01MR1511670
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.