# Riemannian manifolds not quasi-isometric to leaves in codimension one foliations

• [1] Depto. de Matemática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ 22453-900, Brasil
• Volume: 61, Issue: 4, page 1599-1631
• ISSN: 0373-0956

top

## Abstract

top
Every open manifold $L$ of dimension greater than one has complete Riemannian metrics $g$ with bounded geometry such that $\left(L,g\right)$ is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of $\left(L,g\right)$ suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of $\left(L,g\right)$ that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.

## How to cite

top

Schweitzer, Paul A.. "Riemannian manifolds not quasi-isometric to leaves in codimension one foliations." Annales de l’institut Fourier 61.4 (2011): 1599-1631. <http://eudml.org/doc/219796>.

@article{Schweitzer2011,
abstract = {Every open manifold $L$ of dimension greater than one has complete Riemannian metrics $g$ with bounded geometry such that $(L,g)$ is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of $(L,g)$ suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of $(L,g)$ that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.},
affiliation = {Depto. de Matemática, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rio de Janeiro, RJ 22453-900, Brasil},
author = {Schweitzer, Paul A.},
journal = {Annales de l’institut Fourier},
keywords = {codimension one foliation; Reeb component; non-leaf; geometry of leaves; bounded homology property; quasi-isometry; closed leaf theorem},
language = {eng},
number = {4},
pages = {1599-1631},
publisher = {Association des Annales de l’institut Fourier},
title = {Riemannian manifolds not quasi-isometric to leaves in codimension one foliations},
url = {http://eudml.org/doc/219796},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Schweitzer, Paul A.
TI - Riemannian manifolds not quasi-isometric to leaves in codimension one foliations
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 4
SP - 1599
EP - 1631
AB - Every open manifold $L$ of dimension greater than one has complete Riemannian metrics $g$ with bounded geometry such that $(L,g)$ is not quasi-isometric to a leaf of a codimension one foliation of a closed manifold. Hence no conditions on the local geometry of $(L,g)$ suffice to make it quasi-isometric to a leaf of such a foliation. We introduce the ‘bounded homology property’, a semi-local property of $(L,g)$ that is necessary for it to be a leaf in a compact manifold in codimension one, up to quasi-isometry. An essential step involves a partial generalization of the Novikov closed leaf theorem to higher dimensions.
LA - eng
KW - codimension one foliation; Reeb component; non-leaf; geometry of leaves; bounded homology property; quasi-isometry; closed leaf theorem
UR - http://eudml.org/doc/219796
ER -

## References

top
1. F. Alcalde, G. Hector, P.A. Schweitzer, The structure of generalized Reeb components, (2009)
2. F. Alcalde, G. Hector, P.A. Schweitzer, A generalization of Novikov’s Theorem on the existence of Reeb components in codimension one foliations, (2010)
3. O. Attie, S. Hurder, Manifolds which cannot be leaves of foliations, Topology 35 (1996), 335-353 Zbl0866.57022MR1380502
4. C. Camacho, A. Lins Neto, Geometric Theory of Foliations, (1986), Birkhäuser Verlag Zbl0523.57015MR824240
5. J. Cantwell, L. Conlon, Every surface is a leaf, Topology 26 (1987), 265-285 Zbl0621.57014MR899049
6. M. do Carmo, Riemannian Geometry, (1998), Birkhäuser Verlag MR1138207
7. E. Ghys, Une variété qui n’est pas une feuille, Topology 24 (1985), 67-73 Zbl0527.57016MR790676
8. E. Ghys, Topologie des feuilles génériques, Annals of Math. 141 (1995), 387-422 Zbl0843.57026MR1324140
9. A. Haefliger, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa 16 (1962), 367-397 Zbl0122.40702MR189060
10. A. Haefliger, Travaux de Novikov sur les feuilletages, Séminaire Bourbaki (1968) Zbl0208.51901
11. G. Hector, Croissance des feuilletages presque sans holonomie, Foliations and Gelfand-Fuks Cohomology, Rio de Janeiro, 1976 652 (1978), 141-182, Springer Lecture Notes in Mathematics Zbl0393.57005MR505659
12. G. Hector, U. Hirsch, Introduction to the geometry of foliations, B (1983), Vieweg, Braunschweig Zbl0552.57001MR726931
13. T. Inaba, T. Nishimori, M. Takamura, N. Tsuchiya, Open manifolds which are non-realizable as leaves, Kodai Math. J. 8 (1985), 112-119 Zbl0571.57022MR776712
14. T. Januszkiewicz, Characteristic invariants of noncompact Riemannian manifolds, Topology 23 (1984), 299-302 Zbl0594.57011MR770565
15. S.P. Novikov, Topology of foliations, Trans. Moscow Math. Soc. 14 (1965), 268-304 Zbl0247.57006MR200938
16. A. Phillips, D. Sullivan, Geometry of leaves, Topology 20 (1981), 209-218 Zbl0454.57016MR605659
17. G. Reeb, Sur certaines propriétés topologiques des variétés feuilletées, (1952), Hermann, Paris Zbl0049.12602MR55692
18. P.A. Schweitzer, Surfaces not quasi-isometric to leaves of foliations of compact 3-manifolds, Analysis and geometry in foliated manifolds, Proceedings of the VII International Colloquium on Differential Geometry, Santiago de Compostela, 1994 (1995), 223-238, World Scientific, Singapore Zbl0998.53020MR1414206
19. L.C. Siebenmann, Deformation of homeomorphisms on stratified sets, Comment. Math. Helv. 4 (1972), 123-163 Zbl0252.57012MR319207
20. V.V. Solodov, Components of topological foliations (Russian), Mat. Sb. (N.S.) 119 (1982), 340-354 Zbl0518.57014MR678831
21. J. Sondow, When is a manifold a leaf of some foliation?, Bull. Amer. Math. Soc. 81 (1975), 622-624 Zbl0309.57012MR365591
22. D. Sullivan, Cycles for the dynamical study of foliated manifolds and complex manifolds, Inventiones Math. 36 (1976), 225-255 Zbl0335.57015MR433464
23. P Walczak, A virtual leaf, Int. J., Bifur. and Chaos 7 (1996), 1845-1852 Zbl1089.37508MR1728742
24. A. Zeghib, An example of a 2-dimensional no leaf, Proceedings of the 1993 Tokyo Foliations Symposium (1994), 475-477, World Scientific, Singapore MR1363743
25. A. Zetti, Sturm-Liouville Theory, (2005), Amer. Math. Soc., Providence

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.