Embedding theorems for Müntz spaces

Isabelle Chalendar[1]; Emmanuel Fricain[1]; Dan Timotin[2]

  • [1] Université de Lyon 1 INSA de Lyon, École Centrale de Lyon CNRS, UMR5208, Institut Camille Jordan 43 bld. du 11 novembre 1918 69622 Villeurbanne Cedex (France)
  • [2] Institute of Mathematics of the Romanian Academy PO Box 1-764 Bucharest 014700 (Romania)

Annales de l’institut Fourier (2011)

  • Volume: 61, Issue: 6, page 2291-2311
  • ISSN: 0373-0956

Abstract

top
We discuss boundedness and compactness properties of the embedding M Λ 1 L 1 ( μ ) , where M Λ 1 is the closed linear span of the monomials x λ n in L 1 ( [ 0 , 1 ] ) and μ is a finite positive Borel measure on the interval [ 0 , 1 ] . In particular, we introduce a class of “sublinear” measures and provide a rather complete solution of the embedding problem for the class of quasilacunary sequences Λ . Finally, we show how one can recapture some of Al Alam’s results on boundedness and the essential norm of weighted composition operators from M Λ 1 to L 1 ( [ 0 , 1 ] ) .

How to cite

top

Chalendar, Isabelle, Fricain, Emmanuel, and Timotin, Dan. "Embedding theorems for Müntz spaces." Annales de l’institut Fourier 61.6 (2011): 2291-2311. <http://eudml.org/doc/219799>.

@article{Chalendar2011,
abstract = {We discuss boundedness and compactness properties of the embedding $\{M_\Lambda ^1\}\subset L^1(\mu )$, where $\{M_\Lambda ^1\}$ is the closed linear span of the monomials $x^\{\lambda _n\}$ in $L^1([0,1])$ and $\mu $ is a finite positive Borel measure on the interval $[0,1]$. In particular, we introduce a class of “sublinear” measures and provide a rather complete solution of the embedding problem for the class of quasilacunary sequences $\Lambda $. Finally, we show how one can recapture some of Al Alam’s results on boundedness and the essential norm of weighted composition operators from $\{M_\Lambda ^1\}$ to $L^1([0,1])$.},
affiliation = {Université de Lyon 1 INSA de Lyon, École Centrale de Lyon CNRS, UMR5208, Institut Camille Jordan 43 bld. du 11 novembre 1918 69622 Villeurbanne Cedex (France); Université de Lyon 1 INSA de Lyon, École Centrale de Lyon CNRS, UMR5208, Institut Camille Jordan 43 bld. du 11 novembre 1918 69622 Villeurbanne Cedex (France); Institute of Mathematics of the Romanian Academy PO Box 1-764 Bucharest 014700 (Romania)},
author = {Chalendar, Isabelle, Fricain, Emmanuel, Timotin, Dan},
journal = {Annales de l’institut Fourier},
keywords = {Müntz space; embedding measure; weighted composition operator; compact operator; essential norm},
language = {eng},
number = {6},
pages = {2291-2311},
publisher = {Association des Annales de l’institut Fourier},
title = {Embedding theorems for Müntz spaces},
url = {http://eudml.org/doc/219799},
volume = {61},
year = {2011},
}

TY - JOUR
AU - Chalendar, Isabelle
AU - Fricain, Emmanuel
AU - Timotin, Dan
TI - Embedding theorems for Müntz spaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 6
SP - 2291
EP - 2311
AB - We discuss boundedness and compactness properties of the embedding ${M_\Lambda ^1}\subset L^1(\mu )$, where ${M_\Lambda ^1}$ is the closed linear span of the monomials $x^{\lambda _n}$ in $L^1([0,1])$ and $\mu $ is a finite positive Borel measure on the interval $[0,1]$. In particular, we introduce a class of “sublinear” measures and provide a rather complete solution of the embedding problem for the class of quasilacunary sequences $\Lambda $. Finally, we show how one can recapture some of Al Alam’s results on boundedness and the essential norm of weighted composition operators from ${M_\Lambda ^1}$ to $L^1([0,1])$.
LA - eng
KW - Müntz space; embedding measure; weighted composition operator; compact operator; essential norm
UR - http://eudml.org/doc/219799
ER -

References

top
  1. Ihab Al Alam, Géométrie des espaces de Müntz et opérateurs de composition à poids, (2008) Zbl1171.41003
  2. Ihab Al Alam, Essential norms of weighted composition operators on Müntz spaces, J. Math. Anal. Appl. 358 (2009), 273-280 Zbl1170.47011MR2532505
  3. Peter Borwein, Tamás Erdélyi, Polynomials and polynomial inequalities, 161 (1995), Springer-Verlag, New York Zbl0840.26002MR1367960
  4. Vladimir I. Gurariy, Wolfgang Lusky, Geometry of Müntz spaces and related questions, 1870 (2005), Springer-Verlag, Berlin Zbl1094.46003MR2190706
  5. G. H. Hardy, Orders of infinity. The Infinitärcalcül of Paul du Bois-Reymond, (1971), Hafner Publishing Co., New York MR349922
  6. Angela Spalsbury, Perturbations in Müntz’s theorem, J. Approx. Theory 150 (2008), 48-68 Zbl1132.41007MR2381528

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.