Elliptic fibrations of a K 3 surface

Titem Harrache[1]; Odile Lecacheux[1]

  • [1] Université Pierre et Marie Curie 4, Place Jussieu 75252 Paris cedex 05. France

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 183-207
  • ISSN: 1246-7405

Abstract

top
The aim of this paper is to study the elliptic fibrations of a singular K 3 surface to obtain elliptic curves with 7 - torsion points and rank > 0 over .

How to cite

top

Harrache, Titem, and Lecacheux, Odile. "Étude des fibrations elliptiques d’une surface $K3$." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 183-207. <http://eudml.org/doc/219826>.

@article{Harrache2011,
abstract = {On s’intéresse aux fibrations elliptiques d’une surface $K3$ singulière en vue de construire des courbes elliptiques avec $7-$torsion et rang $&gt;0$ sur $\mathbb\{Q\}$.},
affiliation = {Université Pierre et Marie Curie 4, Place Jussieu 75252 Paris cedex 05. France; Université Pierre et Marie Curie 4, Place Jussieu 75252 Paris cedex 05. France},
author = {Harrache, Titem, Lecacheux, Odile},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Elliptic fibrations; K3 surfaces; elliptic fibrations; surfaces},
language = {fre},
month = {3},
number = {1},
pages = {183-207},
publisher = {Société Arithmétique de Bordeaux},
title = {Étude des fibrations elliptiques d’une surface $K3$},
url = {http://eudml.org/doc/219826},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Harrache, Titem
AU - Lecacheux, Odile
TI - Étude des fibrations elliptiques d’une surface $K3$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 183
EP - 207
AB - On s’intéresse aux fibrations elliptiques d’une surface $K3$ singulière en vue de construire des courbes elliptiques avec $7-$torsion et rang $&gt;0$ sur $\mathbb{Q}$.
LA - fre
KW - Elliptic fibrations; K3 surfaces; elliptic fibrations; surfaces
UR - http://eudml.org/doc/219826
ER -

References

top
  1. W.P. Barth, K. Hulek, C.A. Peters, A. Van de Ven, Compact complex surfaces. A series of modern surveys in mathematics 4, Springer, 2004. Zbl1036.14016MR354661
  2. A. Garbagnati, A. Sarti, Symplectic automorphisms of prime order on K3 surfaces. J. Algebra. 318(1) (2007), 323–350. Zbl1129.14049MR2363136
  3. T. Harrache, Etude des fibratons d’une surface K 3 . Thèse de l’Université Paris 6, 27 Nov. 2009. 
  4. H. Inose, Defining equations of singular K 3 surfaces and a notion of isogeny. Intl. Symp. on Algebraic Geometry/ Kyoto 1977, Kinokuniya, (1978), 495–509. Zbl0411.14009MR578868
  5. M. Kuwata, Elliptic fibrations on quartic K 3 surfaces with large Picard numbers. Pacific J. Math. 171(1) (1995), 231–243. Zbl0854.11032MR1362985
  6. M. Kuwata, T. Shioda, Elliptic parameters and defining equations for elliptic fibrations on a Kummer surface. Algebraic geometry in East Asia-Hanoi 2005, 177–215. Adv. Stud. Pure Math. vol 50, Math. Soc. Japan, Tokyo, 2008. Zbl1139.14032MR2409557
  7. O. Lecacheux, Rang de familles de courbes elliptiques. Acta Arith. 109(2) (2003), 131–142. Zbl1036.11022MR1980641
  8. A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux. Inst. Hautes Études Sci. Publ.Math. 21 (1964). Zbl0132.41403MR179172
  9. P. Rabarison, Torsion et rang des courbes elliptiques définies sur les corps de nombres algébriques. Thèse de l’Université de Caen, 18 Sept. 2008. 
  10. M. Schütt, T. Shioda, Elliptic Surfaces. ArXiv 0907.0298v. (2009). 
  11. T. Shioda, On elliptic modular surfaces. J. Math. Soc. Japan 24 (1972), 20–59. Zbl0226.14013MR429918
  12. H. Sterk, Finiteness results for algebraic K 3 surfaces. Math. Z., 189(4) (1985), 507–513. Zbl0545.14032MR786280
  13. J.T. Tate, The arithmetic of elliptic curves. Invent. Math., 23 (1974), 179–206. Zbl0296.14018MR419359
  14. L. C. Washington, Abelian number fields of small degree. Algebra and topology 1990 (Taejŏn, 1990), 63–78. Korea Adv. Inst. Sci. Tech., Taejon, 1990. Zbl0732.11057MR1098721

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.