A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic p

Nigel P. Byott[1]

  • [1] Mathematics Research Institute University of Exeter Harrison Building North Park Road Exeter EX4 4QF, UK

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 1, page 59-70
  • ISSN: 1246-7405

Abstract

top
Let S / R be a finite extension of discrete valuation rings of characteristic p > 0 , and suppose that the corresponding extension L / K of fields of fractions is separable and is H -Galois for some K -Hopf algebra H . Let 𝔻 S / R be the different of S / R . We show that if S / R is totally ramified and its degree n is a power of p , then any element ρ of L with v L ( ρ ) - v L ( 𝔻 S / R ) - 1 ( mod n ) generates L as an H -module. This criterion is best possible. These results generalise to the Hopf-Galois situation recent work of G. G. Elder for Galois extensions.

How to cite

top

Byott, Nigel P.. "A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic $p$." Journal de Théorie des Nombres de Bordeaux 23.1 (2011): 59-70. <http://eudml.org/doc/219828>.

@article{Byott2011,
abstract = {Let $S/R$ be a finite extension of discrete valuation rings of characteristic $p&gt;0$, and suppose that the corresponding extension $L/K$ of fields of fractions is separable and is $H$-Galois for some $K$-Hopf algebra $H$. Let $\mathbb\{D\}_\{S/R\}$ be the different of $S/R$. We show that if $S/R$ is totally ramified and its degree $n$ is a power of $p$, then any element $\rho $ of $L$ with $v_L(\rho ) \equiv -v_L(\mathbb\{D\}_\{S/R\})-1 \hspace\{4.44443pt\}(\@mod \; n)$ generates $L$ as an $H$-module. This criterion is best possible. These results generalise to the Hopf-Galois situation recent work of G. G. Elder for Galois extensions.},
affiliation = {Mathematics Research Institute University of Exeter Harrison Building North Park Road Exeter EX4 4QF, UK},
author = {Byott, Nigel P.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Normal basis; Hopf-Galois extensions; local fields; normal basis},
language = {eng},
month = {3},
number = {1},
pages = {59-70},
publisher = {Société Arithmétique de Bordeaux},
title = {A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic $p$},
url = {http://eudml.org/doc/219828},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Byott, Nigel P.
TI - A valuation criterion for normal basis generators of Hopf-Galois extensions in characteristic $p$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/3//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 1
SP - 59
EP - 70
AB - Let $S/R$ be a finite extension of discrete valuation rings of characteristic $p&gt;0$, and suppose that the corresponding extension $L/K$ of fields of fractions is separable and is $H$-Galois for some $K$-Hopf algebra $H$. Let $\mathbb{D}_{S/R}$ be the different of $S/R$. We show that if $S/R$ is totally ramified and its degree $n$ is a power of $p$, then any element $\rho $ of $L$ with $v_L(\rho ) \equiv -v_L(\mathbb{D}_{S/R})-1 \hspace{4.44443pt}(\@mod \; n)$ generates $L$ as an $H$-module. This criterion is best possible. These results generalise to the Hopf-Galois situation recent work of G. G. Elder for Galois extensions.
LA - eng
KW - Normal basis; Hopf-Galois extensions; local fields; normal basis
UR - http://eudml.org/doc/219828
ER -

References

top
  1. N. P. Byott, Integral Hopf-Galois structures on degree p 2 extensions of p -adic fields. J. Algebra 248 (2002), 334–365. Zbl0992.11065MR1879021
  2. N. P. Byott and G. G. Elder, A valuation criterion for normal bases in elementary abelian extensions. Bull. London Math. Soc. 39 (2007), 705–708. Zbl1128.11055MR2365217
  3. L. N. Childs, Taming Wild Extensions: Hopf Algebras and Local Galois Module Theory. Mathematical Surveys and Monographs 80, American Mathematical Society, 2000. Zbl0944.11038MR1767499
  4. G. G. Elder, A valuation criterion for normal basis generators in local fields of characteristic p . Arch. Math. 94 (2010), 43–47. Zbl1220.11143MR2581332
  5. C. Greither and B. Pareigis, Hopf Galois theory for separable field extensions. J. Algebra 106 (1987), 239–258. Zbl0615.12026MR878476
  6. J.-P. Serre, Local Fields. Graduate Texts in Mathematics 67, Springer, 1979. Zbl0423.12016MR554237
  7. J.-P. Serre, Linear Representations of Finite Groups. Graduate Texts in Mathematics 42, Springer, 1977. Zbl0355.20006MR450380
  8. H. Stichtenoth, Algebraic Function Fields and Codes. Springer, 1993. Zbl1155.14022MR1251961
  9. L. Thomas, A valuation criterion for normal basis generators in equal positive characteristic. J. Algebra 320 (2008), 3811–3820. Zbl1207.11110MR2457723

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.