On the uniqueness of ground states of non-local equations
- [1] Rupert L. Frank, Department of Mathematics, Princeton University, Washington Road, Princeton, NJ 08544, USA
Journées Équations aux dérivées partielles (2011)
- page 1-10
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topFrank, Rupert L.. "On the uniqueness of ground states of non-local equations." Journées Équations aux dérivées partielles (2011): 1-10. <http://eudml.org/doc/219833>.
@article{Frank2011,
abstract = {We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.},
affiliation = {Rupert L. Frank, Department of Mathematics, Princeton University, Washington Road, Princeton, NJ 08544, USA},
author = {Frank, Rupert L.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-10},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On the uniqueness of ground states of non-local equations},
url = {http://eudml.org/doc/219833},
year = {2011},
}
TY - JOUR
AU - Frank, Rupert L.
TI - On the uniqueness of ground states of non-local equations
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 10
AB - We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.
LA - eng
UR - http://eudml.org/doc/219833
ER -
References
top- J. P. Albert, Positivity properties and uniqueness of solitary wave solutions of the intermediate long-wave equation. In: Evolution equations (Baton Rouge, LA, 1992), 11–20, Lecture Notes in Pure and Appl. Math. 168, Dekker, New York, 1995. Zbl0818.35100MR1300416
- J. P. Albert, J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth. IMA J. Appl. Math. 46 (1991), no. 1-2, 1–19. Zbl0723.76106MR1106250
- J. P. Albert, J. L. Bona, J.-C. Saut, Model equations for waves in stratified fluids. Proc. R. Soc. Lond. A 453 (1997), 1233–1260. Zbl0886.35111MR1455330
- J. P. Albert, J. F. Toland, On the exact solutions of the intermediate long-wave equation. Differential Integral Equations 7 (1994), no. 3–4, 601–612. Zbl0937.35142MR1270094
- C. J. Amick, J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation – a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), no. 1-2, 107–126. Zbl0755.35108MR1111746
- W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math. (2) 138 (1993), no. 1, 213–242. Zbl0826.58042MR1230930
- W. Chen, C. Li, B. Ou, Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343. Zbl1093.45001MR2200258
- Ch. V. Coffman, Uniqueness of the ground state solution for and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81–95. Zbl0249.35029MR333489
- R. L. Frank, E. Lenzmann, On ground states for the -critical boson star equation. Preprint (2009), arXiv:0910.2721.
- R. L. Frank, E. Lenzmann, Uniqueness of nonlinear ground states for fractional Laplacians in , Acta Math., to appear. Preprint (2010), arXiv:1009.4042.
- R. L. Frank, E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality. In: Spectral Theory, Function Spaces and Inequalities, B. M. Brown et al. (eds.), 55–67, Oper. Theory Adv. Appl. 219, Birkhäuser, Basel, 2011. Zbl1297.39023
- R. L. Frank, E. H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 21 (2008), no. 4, 925–950. Zbl1202.35146MR2425175
- R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008), 3407–3430. Zbl1189.26031MR2469027
- I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products. Seventh edition. Elsevier/Academic Press, Amsterdam, 2007. Zbl1208.65001MR2360010
- R. I. Joseph, Solitary waves in a finite depth fluid. J. Phys. A 10 (1977), L225–L227. Zbl0369.76018MR455822
- C.E. Kenig, Y. Martel, L. Robbiano, Local well-posedness and blow up in the energy space for a class of critical dispersion generalized Benjamin–Ono equations. Ann. IHP (C) Non Linear Analysis, 28 (2011), no. 6, 853–887. Zbl1230.35102
- M. K. Kwong, Uniqueness of positive solutions of in . Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. Zbl0676.35032MR969899
- Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153–180. Zbl1075.45006MR2055032
- E. H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. of Math. (2) 118 (1983), no. 2, 349–374. Zbl0527.42011MR717827
- E. H. Lieb, M. Loss, Analysis. Second edition. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 2001. Zbl0966.26002MR1817225
- E. H. Lieb, H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112 (1987), no. 1, 147–174. Zbl0641.35065MR904142
- L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455–467. Zbl1185.35260MR2592284
- K. McLeod, J. Serrin, Uniqueness of positive radial solutions of in . Arch. Rational Mech. Anal. 99 (1987), no. 2, 115–145. Zbl0667.35023MR886933
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.