On the uniqueness of ground states of non-local equations

Rupert L. Frank[1]

  • [1] Rupert L. Frank, Department of Mathematics, Princeton University, Washington Road, Princeton, NJ 08544, USA

Journées Équations aux dérivées partielles (2011)

  • page 1-10
  • ISSN: 0752-0360

Abstract

top
We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.

How to cite

top

Frank, Rupert L.. "On the uniqueness of ground states of non-local equations." Journées Équations aux dérivées partielles (2011): 1-10. <http://eudml.org/doc/219833>.

@article{Frank2011,
abstract = {We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.},
affiliation = {Rupert L. Frank, Department of Mathematics, Princeton University, Washington Road, Princeton, NJ 08544, USA},
author = {Frank, Rupert L.},
journal = {Journées Équations aux dérivées partielles},
language = {eng},
month = {6},
pages = {1-10},
publisher = {Groupement de recherche 2434 du CNRS},
title = {On the uniqueness of ground states of non-local equations},
url = {http://eudml.org/doc/219833},
year = {2011},
}

TY - JOUR
AU - Frank, Rupert L.
TI - On the uniqueness of ground states of non-local equations
JO - Journées Équations aux dérivées partielles
DA - 2011/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 10
AB - We review our joint result with E. Lenzmann about the uniqueness of ground state solutions of non-linear equations involving the fractional Laplacian and provide an alternate uniqueness proof for an equation related to the intermediate long-wave equation.
LA - eng
UR - http://eudml.org/doc/219833
ER -

References

top
  1. J. P. Albert, Positivity properties and uniqueness of solitary wave solutions of the intermediate long-wave equation. In: Evolution equations (Baton Rouge, LA, 1992), 11–20, Lecture Notes in Pure and Appl. Math. 168, Dekker, New York, 1995. Zbl0818.35100MR1300416
  2. J. P. Albert, J. L. Bona, Total positivity and the stability of internal waves in stratified fluids of finite depth. IMA J. Appl. Math. 46 (1991), no. 1-2, 1–19. Zbl0723.76106MR1106250
  3. J. P. Albert, J. L. Bona, J.-C. Saut, Model equations for waves in stratified fluids. Proc. R. Soc. Lond. A 453 (1997), 1233–1260. Zbl0886.35111MR1455330
  4. J. P. Albert, J. F. Toland, On the exact solutions of the intermediate long-wave equation. Differential Integral Equations 7 (1994), no. 3–4, 601–612. Zbl0937.35142MR1270094
  5. C. J. Amick, J. F. Toland, Uniqueness and related analytic properties for the Benjamin-Ono equation – a nonlinear Neumann problem in the plane. Acta Math. 167 (1991), no. 1-2, 107–126. Zbl0755.35108MR1111746
  6. W. Beckner, Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. of Math. (2) 138 (1993), no. 1, 213–242. Zbl0826.58042MR1230930
  7. W. Chen, C. Li, B. Ou, Classification of solutions for an integral equation. Comm. Pure Appl. Math. 59 (2006), no. 3, 330–343. Zbl1093.45001MR2200258
  8. Ch. V. Coffman, Uniqueness of the ground state solution for Δ u - u + u 3 = 0 and a variational characterization of other solutions. Arch. Rational Mech. Anal. 46 (1972), 81–95. Zbl0249.35029MR333489
  9. R. L. Frank, E. Lenzmann, On ground states for the L 2 -critical boson star equation. Preprint (2009), arXiv:0910.2721. 
  10. R. L. Frank, E. Lenzmann, Uniqueness of nonlinear ground states for fractional Laplacians in , Acta Math., to appear. Preprint (2010), arXiv:1009.4042. 
  11. R. L. Frank, E. H. Lieb, A new, rearrangement-free proof of the sharp Hardy-Littlewood-Sobolev inequality. In: Spectral Theory, Function Spaces and Inequalities, B. M. Brown et al. (eds.), 55–67, Oper. Theory Adv. Appl. 219, Birkhäuser, Basel, 2011. Zbl1297.39023
  12. R. L. Frank, E. H. Lieb, R. Seiringer, Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators. J. Amer. Math. Soc. 21 (2008), no. 4, 925–950. Zbl1202.35146MR2425175
  13. R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities. J. Funct. Anal. 255 (2008), 3407–3430. Zbl1189.26031MR2469027
  14. I. S. Gradshteyn, I. M. Ryzhik, Table of integrals, series, and products. Seventh edition. Elsevier/Academic Press, Amsterdam, 2007. Zbl1208.65001MR2360010
  15. R. I. Joseph, Solitary waves in a finite depth fluid. J. Phys. A 10 (1977), L225–L227. Zbl0369.76018MR455822
  16. C.E. Kenig, Y. Martel, L. Robbiano, Local well-posedness and blow up in the energy space for a class of L 2 critical dispersion generalized Benjamin–Ono equations. Ann. IHP (C) Non Linear Analysis, 28 (2011), no. 6, 853–887. Zbl1230.35102
  17. M. K. Kwong, Uniqueness of positive solutions of Δ u - u + u p = 0 in n . Arch. Rational Mech. Anal. 105 (1989), no. 3, 243–266. Zbl0676.35032MR969899
  18. Y. Y. Li, Remark on some conformally invariant integral equations: the method of moving spheres. J. Eur. Math. Soc. (JEMS) 6 (2004), no. 2, 153–180. Zbl1075.45006MR2055032
  19. E. H. Lieb, Sharp constants in the Hardy–Littlewood–Sobolev and related inequalities. Ann. of Math. (2) 118 (1983), no. 2, 349–374. Zbl0527.42011MR717827
  20. E. H. Lieb, M. Loss, Analysis. Second edition. Graduate Studies in Mathematics 14, American Mathematical Society, Providence, RI, 2001. Zbl0966.26002MR1817225
  21. E. H. Lieb, H.-T. Yau, The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Comm. Math. Phys. 112 (1987), no. 1, 147–174. Zbl0641.35065MR904142
  22. L. Ma, L. Zhao, Classification of positive solitary solutions of the nonlinear Choquard equation. Arch. Ration. Mech. Anal. 195 (2010), no. 2, 455–467. Zbl1185.35260MR2592284
  23. K. McLeod, J. Serrin, Uniqueness of positive radial solutions of - Δ u + f ( u ) = 0 in R n . Arch. Rational Mech. Anal. 99 (1987), no. 2, 115–145. Zbl0667.35023MR886933

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.