Higher regularizations of zeros of cuspidal automorphic L -functions of GL d

Masato Wakayama[1]; Yoshinori Yamasaki[2]

  • [1] Faculty of Mathematics Kyushu University Motooka, Nishiku, Fukuoka 819-0395, JAPAN
  • [2] Graduate School of Science and Engineering Ehime University Bunkyo-cho, Matsuyama 790-8577, JAPAN

Journal de Théorie des Nombres de Bordeaux (2011)

  • Volume: 23, Issue: 3, page 751-767
  • ISSN: 1246-7405

Abstract

top
We establish “higher depth” analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic L -functions of GL d over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.

How to cite

top

Wakayama, Masato, and Yamasaki, Yoshinori. "Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$." Journal de Théorie des Nombres de Bordeaux 23.3 (2011): 751-767. <http://eudml.org/doc/219842>.

@article{Wakayama2011,
abstract = {We establish “higher depth” analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic $L$-functions of $\{\rm GL\}_d$ over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.},
affiliation = {Faculty of Mathematics Kyushu University Motooka, Nishiku, Fukuoka 819-0395, JAPAN; Graduate School of Science and Engineering Ehime University Bunkyo-cho, Matsuyama 790-8577, JAPAN},
author = {Wakayama, Masato, Yamasaki, Yoshinori},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {cuspidal automorphic $L$-functions; regularized products (determinants); explicit formulas; grand Riemann hypothesis; cuspidal automorphic -functions},
language = {eng},
month = {11},
number = {3},
pages = {751-767},
publisher = {Société Arithmétique de Bordeaux},
title = {Higher regularizations of zeros of cuspidal automorphic $L$-functions of $\{\rm GL\}_d$},
url = {http://eudml.org/doc/219842},
volume = {23},
year = {2011},
}

TY - JOUR
AU - Wakayama, Masato
AU - Yamasaki, Yoshinori
TI - Higher regularizations of zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/11//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 3
SP - 751
EP - 767
AB - We establish “higher depth” analogues of regularized determinants due to Milnor for zeros of cuspidal automorphic $L$-functions of ${\rm GL}_d$ over a general number field. This is a generalization of the result of Deninger about the regularized determinant for zeros of the Riemann zeta function.
LA - eng
KW - cuspidal automorphic $L$-functions; regularized products (determinants); explicit formulas; grand Riemann hypothesis; cuspidal automorphic -functions
UR - http://eudml.org/doc/219842
ER -

References

top
  1. K. Barner, On A. Weil’s explicit formula. J. Reine Angew. Math. 323 (1981), 139–152. Zbl0446.12013MR611448
  2. D. Bump, Automorphic forms and representations. Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge, 1997. Zbl0868.11022MR1431508
  3. C. Deninger, Local L -factors of motives and regularized determinants. Invent. Math. 107 (1992), 135–150. Zbl0762.14015MR1135468
  4. R. Godement and H. Jacquet, Zeta functions of simple algebras. Lecture Notes in Mathematics, Vol. 260. Springer-Verlag, Berlin-New York, 1972. Zbl0244.12011MR342495
  5. T. Ibukiyama and H. Saito, On zeta functions associated to symmetric matrices. I. An explicit form of zeta functions. Amer. J. Math. 117 (1995), 1097–1155. Zbl0846.11028MR1350594
  6. H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L -functions. Geom. Funct. Anal. Special Volume (2000) Part II, 705–741. Zbl0996.11036MR1826269
  7. N. Kurokawa, H. Ochiai and M. Wakayama, Milnor’s multiple gamma functions. J. Ramanujan Math. Soc. 21 (2006), 153–167. Zbl1189.11043MR2244542
  8. N. Kurokawa and M. Wakayama, Analyticity of polylogarithmic Euler products. Rend. Circ. Mat. di Palermo. 200 (2003), 382–388. Zbl1097.11046MR2029551
  9. N. Kurokawa, M. Wakayama and Y. Yamasaki, Milnor-Selberg zeta functions and zeta regularizations. Preprint, 2011. arXiv:1011.3093. Zbl06138305
  10. W. Luo, Z. Rudnick and P. Sarnak, On the generalized Ramanujan conjecture for GL ( n ) . In Automorphic forms, automorphic representations, and arithmetic, Proc. Sympos. Pure Math. 66, Part 2 (1999), 301–310. Zbl0965.11023MR1703764
  11. J. Milnor, On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseignement Mathématique. 29 (1983), 281–322. Zbl0557.10031MR719313
  12. P. Michel, Répartition des zéros des fonctions L et matrices aléatoires. Seminaire Bourbaki, Vol. 2000/2001, Astérisque. 282 (2002), Exp. No. 887, viii, 211–248. Zbl1075.11056MR1975180
  13. M. Schröter and C. Soulé, On a result of Deninger concerning Riemann’s zeta function. In Motives, Proc. Sympos. Pure Math. 55, Part 1 (1994), 745–747. Zbl0809.11045MR1265548
  14. J. Steuding, Value-distribution of L -functions. Lecture Notes in Mathematics, Vol. 1877. Springer, Berlin, 2007. Zbl1130.11044MR2330696
  15. Y. Yamasaki, Factorization formulas for higher depth determinants of the Laplacian on the n -sphere. Preprint, 2010. arXiv:1011.3095. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.