Creative Telescoping for Parametrised Integration and Summation
- [1] INRIA (France)
Les cours du CIRM (2011)
- Volume: 2, Issue: 1, page 1-37
- ISSN: 2108-7164
Access Full Article
topHow to cite
topChyzak, Frédéric. "Creative Telescoping for Parametrised Integration and Summation." Les cours du CIRM 2.1 (2011): 1-37. <http://eudml.org/doc/219845>.
@article{Chyzak2011,
affiliation = {INRIA (France)},
author = {Chyzak, Frédéric},
journal = {Les cours du CIRM},
language = {eng},
number = {1},
pages = {1-37},
publisher = {CIRM},
title = {Creative Telescoping for Parametrised Integration and Summation},
url = {http://eudml.org/doc/219845},
volume = {2},
year = {2011},
}
TY - JOUR
AU - Chyzak, Frédéric
TI - Creative Telescoping for Parametrised Integration and Summation
JO - Les cours du CIRM
PY - 2011
PB - CIRM
VL - 2
IS - 1
SP - 1
EP - 37
LA - eng
UR - http://eudml.org/doc/219845
ER -
References
top- S. A. Abramov, Applicability of Zeilberger’s algorithm to hypergeometric terms, Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation (2002), 1-7 (electronic), ACM, New York Zbl1072.68642MR2035226
- S. A. Abramov, When does Zeilberger’s algorithm succeed?, Adv. in Appl. Math. 30 (2003), 424-441 Zbl1030.33011MR1973952
- S. A. Abramov, Rational solutions of linear differential and difference equations with polynomial coefficients, U.S.S.R. Comput. Math. and Math. Phys. 29 (1991), 7-12 Zbl0719.65063MR1025995
- S. A. Abramov, Rational solutions of linear difference and -difference equations with polynomial coefficients, Program. Comput. Software 21 (1995), 273-278 Zbl0910.65107MR1615571
- S. A. Abramov, H. Q. Le, Applicability of Zeilberger’s algorithm to rational functions, Formal power series and algebraic combinatorics (Moscow, 2000) (2000), 91-102, Springer, Berlin Zbl0963.65026MR1798204
- S. A. Abramov, H. Q. Le, A criterion for the applicability of Zeilberger’s algorithm to rational functions, Discrete Math. 259 (2002), 1-17 Zbl1023.33017MR1948770
- S. A. Abramov, M. Petkovšek, On the structure of multivariate hypergeometric terms, Adv. in Appl. Math. 29 (2002), 386-411 Zbl1057.33017MR1942630
- Moa Apagodu, The sharpening of Wilf-Zeilberger theory, (2006), ProQuest LLC, Ann Arbor, MI Zbl1108.05010MR2709554
- Richard Askey, The world of , CWI Quarterly 5 (1992), 251-269 Zbl0765.33015MR1213742
- Moa Apagodu, Doron Zeilberger, Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory, Adv. in Appl. Math. 37 (2006), 139-152 Zbl1108.05010MR2251432
- Gert Almkvist, Doron Zeilberger, The method of differentiating under the integral sign, J. Symbolic Comput. 10 (1990), 571-591 Zbl0717.33004MR1087980
- Alin Bostan, Frédéric Chyzak, Pierre Lairez, 3 pages. In preparation (2011)
- Alin Bostan, Frédéric Chyzak, Mark van Hoeij, Lucien Pech, Explicit formula for the generating series of diagonal 3D rook paths, Sém. Loth. Comb. (2011) Zbl1295.05028
- I. N. Bernšteĭn, Modules over a ring of differential operators. An investigation of the fundamental solutions of equations with constant coefficients, Funkcional. Anal. i Priložen. 5 (1971), 1-16 Zbl0233.47031MR290097
- I. N. Bernšteĭn, Analytic continuation of generalized functions with respect to a parameter, Funkcional. Anal. i Priložen. 6 (1972), 26-40 Zbl0282.46038MR320735
- Harald Böing, Wolfram Koepf, Algorithms for -hypergeometric summation in computer algebra, J. Symbolic Comput. 28 (1999), 777-799 Zbl0946.65008MR1750546
- R. J. Blodgelt, Problem E3376, Amer. Math. Monthly (1990)
- Manuel Bronstein, Marko Petkovšek, Ore rings, linear operators and factorization, Programmirovanie (1994), 27-44 Zbl0828.16035MR1291354
- Manuel Bronstein, Marko Petkovšek, An introduction to pseudo-linear algebra, Theoret. Comput. Sci. 157 (1996), 3-33 Zbl0868.34004MR1383396
- Shaoshi Chen, Frédéric Chyzak, Ruyong Feng, Ziming Li, On the Existence of Telescopers for Hyperexponential-Hypergeometric Sequences, (2011) Zbl1303.33024
- Shaoshi Chen, Some applications of differential-difference algebra to creative telescoping, (2011)
- William Y. C. Chen, Qing-Hu Hou, Yan-Ping Mu, Applicability of the -analogue of Zeilberger’s algorithm, J. Symbolic Comput. 39 (2005), 155-170 Zbl1126.33008MR2169798
- Frédéric Chyzak, An extension of Zeilberger’s fast algorithm to general holonomic functions, Discrete Math. 217 (2000), 115-134 Zbl0968.33011MR1766263
- Frédéric Chyzak, Fonctions holonomes en calcul formel, (1998)
- Frédéric Chyzak, Gröbner bases, symbolic summation and symbolic integration, Gröbner bases and applications (Linz, 1998) 251 (1998), 32-60, Cambridge Univ. Press, Cambridge Zbl0898.68040MR1699813
- Frédéric Chyzak, Manuel Kauers, Bruno Salvy, A non-holonomic systems approach to special function identities, ISSAC 2009—Proceedings of the 2009 International Symposium on Symbolic and Algebraic Computation (2009), 111-118, ACM, New York Zbl1237.33001MR2742698
- F. Chyzak, A. Quadrat, D. Robertz, Effective algorithms for parametrizing linear control systems over Ore algebras, Appl. Algebra Engrg. Comm. Comput. 16 (2005), 319-376 Zbl1109.93018MR2233761
- William Y. C. Chen, Lisa H. Sun, Extended Zeilberger’s algorithm for identities on Bernoulli and Euler polynomials, J. Number Theory 129 (2009), 2111-2132 Zbl1183.11011MR2528056
- Frédéric Chyzak, Bruno Salvy, Non-commutative elimination in Ore algebras proves multivariate identities, J. Symbolic Comput. 26 (1998), 187-227 Zbl0944.05006MR1635242
- Gustav Doetsch, Integraleigenschaften der Hermiteschen Polynome, Math. Z. 32 (1930), 587-599 Zbl56.0989.03MR1545186
- Shalosh B. Ekhad, Doron Zeilberger, A high-school algebra, “formal calculus”, proof of the Bieberbach conjecture [after L. Weinstein], Jerusalem combinatorics ’93 178 (1994), 113-115, Amer. Math. Soc., Providence, RI Zbl0894.30013MR1310578
- Shalosh B. Ekhad, Doron Zeilberger, A WZ proof of Ramanujan’s formula for , Geometry, Analysis, and Mechanics (1994), 107-108, RassiasJ. M.J. M., Singapore Zbl0849.33003MR1323194
- Shalosh B. Ekhad, Doron Zeilberger, The number of solutions of in triangular matrices over , Electron. J. Combin. 3 (1996) Zbl0851.15010MR1364064
- Mary Celine Fasenmyer, Some generalized hypergeometric polynomials, (1945) Zbl0032.15402
- Mary Celine Fasenmyer, A note on pure recurrence relations, Amer. Math. Monthly 56 (1949), 14-17 Zbl0032.41002MR30044
- André Galligo, Some algorithmic questions on ideals of differential operators, EUROCAL ’85, Vol. 2 (Linz, 1985) 204 (1985), 413-421, Springer, Berlin Zbl0634.16001MR826576
- Ira M. Gessel, Applications of the classical umbral calculus, Algebra Universalis 49 (2003), 397-434 Zbl1092.05005MR2022347
- I. M. Gel’fand, M. I. Graev, V. S. Retakh, General hypergeometric systems of equations and series of hypergeometric type, Russian Math. Surveys 47 (1992), 1-88 Zbl0798.33010MR1208882
- Qiang-Hui Guo, Qing-Hu Hou, Lisa H. Sun, Proving hypergeometric identities by numerical verifications, J. Symbolic Comput. 43 (2008), 895-907 Zbl1173.33304MR2472539
- M. L. Glasser, E. Montaldi, Some integrals involving Bessel functions, J. Math. Anal. Appl. 183 (1994), 577-590 Zbl0809.33001MR1274858
- R. William Gosper, Decision procedure for indefinite hypergeometric summation, Proc. Nat. Acad. Sci. U.S.A. 75 (1978), 40-42 Zbl0384.40001MR485674
- Joachim Hornegger, Hypergeometrische Summation und polynomiale Rekursion, (1992)
- Qing-Hu Hou, -free recurrences of double hypergeometric terms, Adv. in Appl. Math. 32 (2004), 468-484 Zbl1057.33018MR2041960
- N. Jacobson, Pseudo-linear transformations, Ann. of Math. (2) 38 (1937), 484-507 Zbl0017.15001MR1503347
- Masaki Kashiwara, On the holonomic systems of linear differential equations. II, Invent. Math. 49 (1978), 121-135 Zbl0401.32005MR511186
- Manuel Kauers, Summation algorithms for Stirling number identities, J. Symbolic Comput. 42 (2007), 948-970 Zbl1142.11008MR2361673
- Tom H. Koornwinder, On Zeilberger’s algorithm and its -analogue, Proceedings of the Seventh Spanish Symposium on Orthogonal Polynomials and Applications (VII SPOA) (Granada, 1991) 48 (1993), 91-111 Zbl0797.65011MR1246853
- Christoph Koutschan, A fast approach to creative telescoping, Math. Comput. Sci. 4 (2010), 259-266 Zbl1218.68205MR2775992
- A. Kandri-Rody, V. Weispfenning, Noncommutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1-26 Zbl0715.16010MR1044911
- Kha Le, On the -analogue of Zeilberger’s algorithm for rational functions, Programmirovanie (2001), 49-58 Zbl0985.33014MR1867720
- L. Lipshitz, The diagonal of a -finite power series is -finite, J. Algebra 113 (1988), 373-378 Zbl0657.13024MR929767
- L. Lipshitz, -finite power series, J. Algebra 122 (1989), 353-373 Zbl0695.12018MR999079
- John E. Majewicz, WZ-style certification and Sister Celine’s technique for Abel-type sums, J. Differ. Equations Appl. 2 (1996), 55-65 Zbl0863.05009MR1375596
- John E. Majewicz, WZ certification of Abel-type identities and Askey’s positivity conjecture, (1997), ProQuest LLC, Ann Arbor, MI MR2696103
- Mohamud Mohammed, Doron Zeilberger, Sharp upper bounds for the orders of the recurrences output by the Zeilberger and -Zeilberger algorithms, J. Symbolic Comput. 39 (2005), 201-207 Zbl1121.33023MR2169800
- Hiromasa Nakayama, Kenta Nishiyama, An algorithm of computing inhomogeneous differential equations for definite integrals, Proceedings of the Third international congress conference on Mathematical software (2010), 221-232, Springer-Verlag, Berlin, Heidelberg Zbl1294.68162
- Toshinori Oaku, Algorithms for integrals of holonomic functions over domains defined by polynomial inequalities, (2011) Zbl1284.68683
- Toshinori Oaku, An algorithm of computing -functions, Duke Math. J. 87 (1997), 115-132 Zbl0893.32009MR1440065
- Oystein Ore, Sur les fonctions hypergéométriques de plusieurs variables, Comptes Rendus des Séances de l’Académie des Sciences 189 (1929), 1238-1241 Zbl55.0220.03
- Oystein Ore, Sur la forme des fonctions hypergéométriques de plusieurs variables, Journal de Mathématiques Pures et Appliquées 9 (1930), 311-326 Zbl56.0313.13
- Oystein Ore, Linear equations in non-commutative fields, Ann. of Math. (2) 32 (1931), 463-477 Zbl0001.26601MR1503010
- Oystein Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), 480-508 Zbl0007.15101MR1503119
- Toshinori Oaku, Nobuki Takayama, Algorithms for -modules—restriction, tensor product, localization, and local cohomology groups, J. Pure Appl. Algebra 156 (2001), 267-308 Zbl0983.13008MR1808827
- Toshinori Oaku, Nobuki Takayama, Integrals of modules and their applications, Sūrikaisekikenkyūsho Kōkyūroku (1998), 163-169 Zbl0944.14501MR1672325
- Toshinori Oaku, Nobuki Takayama, Uli Walther, A localization algorithm for -modules, J. Symbolic Comput. 29 (2000), 721-728 Zbl1012.13010MR1769663
- Peter Paule, Greatest factorial factorization and symbolic summation, J. Symbolic Comput. 20 (1995), 235-268 Zbl0854.68047MR1378099
- Peter Paule, Axel Riese, A Mathematica -analogue of Zeilberger’s algorithm based on an algebraically motivated approach to -hypergeometric telescoping, Special functions, -series and related topics (Toronto, ON, 1995) 14 (1997), 179-210, Amer. Math. Soc., Providence, RI Zbl0869.33010
- Helmut Prodinger, Descendants in heap ordered trees, or, A triumph of computer algebra, Electron. J. Combin. 3 (1996) Zbl0885.05004MR1410884
- Peter Paule, Markus Schorn, A Mathematica version of Zeilberger’s algorithm for proving binomial coefficient identities, J. Symbolic Comput. 20 (1995), 673-698 Zbl0851.68052MR1395420
- R. Piessens, P. Verbaeten, Numerical solution of the Abel integral equation, Nordisk Tidskr. Informationsbehandling (BIT) 13 (1973), 451-457 Zbl0266.65081MR329293
- Earl D. Rainville, Special functions, (1960), The Macmillan Co., New York Zbl0092.06503MR107725
- Axel Riese, Fine-tuning Zeilberger’s algorithm. The methods of automatic filtering and creative substituting, Symbolic computation, number theory, special functions, physics and combinatorics (Gainesville, FL, 1999) 4 (2001), 243-254, Kluwer Acad. Publ., Dordrecht Zbl1037.33018MR1880090
- Axel Riese, qMultiSum—a package for proving -hypergeometric multiple summation identities, J. Symbolic Comput. 35 (2003), 349-376 Zbl1020.33007MR1962799
- Axel Riese, A generalization of Gosper’s algorithm to bibasic hypergeometric summation, Electron. J. Combin. 3 (1996) Zbl0885.33012MR1394550
- Mikio Sato, Theory of prehomogeneous vector spaces (algebraic part)—the English translation of Sato’s lecture from Shintani’s note, Nagoya Math. J. 120 (1990), 1-34 Zbl0715.22014MR1086566
- Mutsumi Saito, Bernd Sturmfels, Nobuki Takayama, Gröbner deformations of hypergeometric differential equations, 6 (2000), Springer-Verlag, Berlin Zbl0946.13021MR1734566
- Bernd Sturmfels, Nobuki Takayama, Gröbner bases and hypergeometric functions, Gröbner bases and applications (Linz, 1998) 251 (1998), 246-258, Cambridge Univ. Press, Cambridge Zbl0918.33004MR1708882
- R. P. Stanley, Differentiably finite power series, European J. Combin. 1 (1980), 175-188 Zbl0445.05012MR587530
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, 62 (1999), Cambridge University Press, Cambridge Zbl0928.05001MR1676282
- Volker Strehl, Binomial identities—combinatorial and algorithmic aspects, Discrete Math. 136 (1994), 309-346 Zbl0823.33003MR1313292
- James Joseph Sylvester, A method of determining by mere inspection the derivatives from two equations of any degree, Philosophical Magazine XVI (1840), 132-135
- Nobuki Takayama, Gröbner basis and the problem of contiguous relations, Japan J. Appl. Math. 6 (1989), 147-160 Zbl0691.68032MR981518
- Nobuki Takayama, An algorithm of constructing the integral of a module — an infinite dimensional analog of Gröbner basis, Symbolic and Algebraic Computation (1990), 206-211, ACM and Addison-Wesley
- Nobuki Takayama, Gröbner basis, integration and transcendental functions, Symbolic and Algebraic Computation (1990), 152-156, ACM and Addison-Wesley
- Nobuki Takayama, An approach to the zero recognition problem by Buchberger algorithm, J. Symbolic Comput. 14 (1992), 265-282 Zbl0763.65007MR1187235
- Akalu Tefera, Improved algorithms and implementations in the multi-WZ theory, (2000), ProQuest LLC, Ann Arbor, MI Zbl0939.65035MR2701445
- Akalu Tefera, MultInt, a MAPLE package for multiple integration by the WZ method, J. Symbolic Comput. 34 (2002), 329-353 Zbl1015.33013MR1937465
- Harrison Tsai, Weyl closure of a linear differential operator, J. Symbolic Comput. 29 (2000), 747-775 Zbl1008.16026MR1769665
- Harrison Tsai, Algorithms for associated primes, Weyl closure, and local cohomology of -modules, Local cohomology and its applications (Guanajuato, 1999) 226 (2002), 169-194, Dekker, New York Zbl0992.68245MR1888199
- Alfred van der Poorten, A proof that Euler missedApéry’s proof of the irrationality of , Math. Intelligencer 1 (1979), 195-203 Zbl0409.10028MR547748
- Petrus Verbaeten, The automatic construction of pure recurrence relations, Proceedings of Eurosam 74, Sigsam Bulletin (1974), 96-98
- Pierre Verbaeten, Rekursiebetrekkingen voor lineaire hypergeometrische funkties, (1976), Leuven, Belgium
- Kurt Wegschaider, Computer generated proofs of binomial multi-sum identities, (1997)
- Herbert S. Wilf, Doron Zeilberger, An algorithmic proof theory for hypergeometric (ordinary and “”) multisum/integral identities, Invent. Math. 108 (1992), 575-633 Zbl0739.05007MR1163239
- Herbert S. Wilf, Doron Zeilberger, Rational function certification of multisum/integral/“” identities, Bull. Amer. Math. Soc. (N.S.) 27 (1992), 148-153 Zbl0759.05007MR1145580
- Lily Yen, Contributions to the proof theory of hypergeometric identities, (1993) MR2689630
- Lily Yen, A two-line algorithm for proving terminating hypergeometric identities, J. Math. Anal. Appl. 198 (1996), 856-878 Zbl0857.33002MR1377830
- Lily Yen, A two-line algorithm for proving -hypergeometric identities, J. Math. Anal. Appl. 213 (1997), 1-14 Zbl0903.33008MR1469359
- Doron Zeilberger, The algebra of linear partial difference operators and its applications, SIAM J. Math. Anal. 11 (1980), 919-932 Zbl0458.39002MR595820
- Doron Zeilberger, Sister Celine’s technique and its generalizations, J. Math. Anal. Appl. 85 (1982), 114-145 Zbl0485.05003MR647562
- Doron Zeilberger, A fast algorithm for proving terminating hypergeometric identities, Discrete Math. 80 (1990), 207-211 Zbl0701.05001MR1048463
- Doron Zeilberger, A holonomic systems approach to special functions identities, J. Comput. Appl. Math. 32 (1990), 321-368 Zbl0738.33001MR1090884
- Doron Zeilberger, The method of creative telescoping, J. Symbolic Comput. 11 (1991), 195-204 Zbl0738.33002MR1103727
- Doron Zeilberger, Towards a WZ evaluation of the Mehta integral, SIAM J. Math. Anal. 25 (1994), 812-814 Zbl0934.33002MR1266590
- Bao-Yin Zhang, A new elementary algorithm for proving -hypergeometric identities, J. Symbolic Comput. 35 (2003), 293-303 Zbl1020.33006MR1962797
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.