Computing the number of certain Galois representations mod
- [1] Universität Heidelberg IWR, Im Neuenheimer Feld 368 69120 Heidelberg, Germany
Journal de Théorie des Nombres de Bordeaux (2011)
- Volume: 23, Issue: 3, page 603-627
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topCenteleghe, Tommaso Giorgio. "Computing the number of certain Galois representations mod $p$." Journal de Théorie des Nombres de Bordeaux 23.3 (2011): 603-627. <http://eudml.org/doc/219850>.
@article{Centeleghe2011,
abstract = {Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime $p\le 2593$, a lower bound for the number of isomorphism classes of Galois representation of $\mathbf\{Q\}$ on a two–dimensional vector space over $\overline\{\mathbf\{F\}\}_p$ which are irreducible, odd, and unramified outside $p$.},
affiliation = {Universität Heidelberg IWR, Im Neuenheimer Feld 368 69120 Heidelberg, Germany},
author = {Centeleghe, Tommaso Giorgio},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {11},
number = {3},
pages = {603-627},
publisher = {Société Arithmétique de Bordeaux},
title = {Computing the number of certain Galois representations mod $p$},
url = {http://eudml.org/doc/219850},
volume = {23},
year = {2011},
}
TY - JOUR
AU - Centeleghe, Tommaso Giorgio
TI - Computing the number of certain Galois representations mod $p$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2011/11//
PB - Société Arithmétique de Bordeaux
VL - 23
IS - 3
SP - 603
EP - 627
AB - Using the link between Galois representations and modular forms established by Serre’s Conjecture, we compute, for every prime $p\le 2593$, a lower bound for the number of isomorphism classes of Galois representation of $\mathbf{Q}$ on a two–dimensional vector space over $\overline{\mathbf{F}}_p$ which are irreducible, odd, and unramified outside $p$.
LA - eng
UR - http://eudml.org/doc/219850
ER -
References
top- M. F. Atiyah, I.G. Macdonald, Introduction to Commutative Algebra. Addison-Wesley, 1969. Zbl0175.03601MR242802
- A. Ash, G. Stevens, Modular Forms in characteristic and special values of their -functions. Duke Math. J. 53 (1986), no.3, 849–868. Zbl0618.10026MR860675
- W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (1997), 235–265. Zbl0898.68039MR1484478
- C. Citro, A. Ghitza, Enumerating Galois representations in Sage. Preprint available at http://arxiv.org/abs/1006.4084. Zbl1244.11099
- B. Edixhoven, The weight in Serre’s conjecture on modular forms. Invent. Math. 109 (1992), 563–594. Zbl0777.11013MR1176206
- B. Gross, A tameness criterion for Galois representations associated to modular forms (mod ). Duke Math. J. 61 (1990), no. 2, 445–517. Zbl0743.11030MR1074305
- N. Jochnowitz, A study of the local components of the Hecke Algebra mod . Trans. Amer. Math. Soc. 270 (1982), no.1, 253–267. Zbl0536.10021MR642340
- N. Jochnowitz, Congruences between systems of eigenvalues of modular forms. Trans. Amer. Math. Soc. 270 (1982), no.1, 269–285. Zbl0536.10022MR642341
- N. Katz, p-adic properties of modular schemes and modular forms. Modular Functions of One Variable III, Lecture Notes in Math. 350, 69–190. Springer–Verlag, 1973. Zbl0271.10033MR447119
- C. Khare, Modularity of Galois representations and motives with good reduction properties. J. Ramanujan Math. Soc. 22 (2007), No. 1, 1-26. Zbl1192.11036MR2312549
- C. Khare, Serre’s modularity conjecture: the level one case. Duke Math. J. 134 (2006), no.3, 557–589. Zbl1105.11013MR2254626
- S. Lang, Introduction to Modular Forms. Springer–Verlag, 1976. Zbl0344.10011MR429740
- D.A. Marcus, Number Fields. Springer–Verlag, 1977. Zbl0383.12001MR457396
- J.–P. Serre, Congruences et formes modulaires (d’après H.P.F. Swinnerton-Dyer). Sém. Bourbaki 1972/72, no. 416. Zbl0276.14013MR466020
- J.–P. Serre, Corps Locaux. Hermann, Quatrième édition, corrigée, 2004. MR354618
- J.–P. Serre, A Course in Arithmetiic. Springer-Verlag, 1973. Zbl0432.10001MR344216
- J.–P. Serre, Modular forms of weight one and Galois representations. Algebraic Number Fields, Edited by A. Fröhlich, 193–268. Acad. Press, 1977. Zbl0366.10022MR450201
- G. Wiese, Dihedral Galois representations and Katz modular forms. Documenta Math. 9 (2004), 123–133. Zbl1119.14019MR2054983
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.