Rigidity of Rank-One Factors of Compact Symmetric Spaces
- [1] Université de Nantes Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 44322 Nantes Cedex 3 (France)
Annales de l’institut Fourier (2011)
- Volume: 61, Issue: 2, page 491-509
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topClarke, Andrew. "Rigidity of Rank-One Factors of Compact Symmetric Spaces." Annales de l’institut Fourier 61.2 (2011): 491-509. <http://eudml.org/doc/219853>.
@article{Clarke2011,
abstract = {We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.},
affiliation = {Université de Nantes Laboratoire de Mathématiques Jean Leray 2, rue de la Houssinière - BP 92208 44322 Nantes Cedex 3 (France)},
author = {Clarke, Andrew},
journal = {Annales de l’institut Fourier},
keywords = {Minimal submanifolds; rigidity; symmetric spaces; minimal submanifold; totally geodesic submanifold; rank-one factor; symmetric space},
language = {eng},
number = {2},
pages = {491-509},
publisher = {Association des Annales de l’institut Fourier},
title = {Rigidity of Rank-One Factors of Compact Symmetric Spaces},
url = {http://eudml.org/doc/219853},
volume = {61},
year = {2011},
}
TY - JOUR
AU - Clarke, Andrew
TI - Rigidity of Rank-One Factors of Compact Symmetric Spaces
JO - Annales de l’institut Fourier
PY - 2011
PB - Association des Annales de l’institut Fourier
VL - 61
IS - 2
SP - 491
EP - 509
AB - We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.
LA - eng
KW - Minimal submanifolds; rigidity; symmetric spaces; minimal submanifold; totally geodesic submanifold; rank-one factor; symmetric space
UR - http://eudml.org/doc/219853
ER -
References
top- J.L.M. Barbosa, An extrinsic rigidity theorem for minimal immersions of into , J. Diff. Geom. 14 (1979), 355-368 Zbl0427.53028MR594706
- I. Chavel, Riemannian Symmetric Spaces of Rank One, (1972), Marcel Dekker Inc., New York Zbl0239.53032MR383304
- S.S. Chern, M. Do Carmo, S. Kobayashi, Minimal submanifolds of the sphere with second fundamental form of constant length, (1970), Springer Verlag Zbl0216.44001MR273546
- D. Fischer-Colbrie, Some rigidity theorems for minimal submanifolds of the sphere, Acta Math. 145 (1980), 29-46 Zbl0464.53047MR558091
- H. Gluck, F. Morgan, W. Ziller, Calibrated geometries in Grassmann manifolds, Comment Math. Helv. 64 (1989), 256-268 Zbl0681.53039MR997365
- W.T. Hsiang, W.Y. Hsiang, Examples of codimension-one closed minimal submanifolds in some symmetric spaces. I., J. Diff. Geom. 15 (1980), 543-551 Zbl0467.53023MR628343
- S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, 2 (1969), Interscience, New York Zbl0175.48504
- H.B. Lawson Jr., Complete minimal surfaces in , Ann. of Math. 92 (1970), 335-374 Zbl0205.52001MR270280
- H.B. Lawson Jr., Rigidity theorems in rank-1 symmetric spaces, J. Diff. Geom. 4 (1970), 349-357 Zbl0199.56401MR267492
- N. Mok, Y.T. Siu, S.-K. Yeung, Geometric Superrigidity, J. Diff. Geom. 113 (1993), 57-83 Zbl0808.53043MR1223224
- L. Simon, Lecture Notes on Geometric Measure Theory, (1983), Australian National University
- J. Simons, Minimal varieties in riemannian manifolds, Ann. Math. 88 (1968), 65-105 Zbl0181.49702MR233295
- D.Č. Thi, Minimal real currents on compact riemannian manifolds, Math. USSR Izv. 11 (1970), 807-820 Zbl0387.49042
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.