Value distribution problem for p -adic meromorphic functions and their derivatives

Ha Huy Khoai[1]; Vu Hoai An[2]

  • [1] Institute of Mathematics,18 Hoang Quoc Viet, 10307, Hanoi, Viet Nam
  • [2] Hai Duong Pedagogical College, Hai Duong, Viet Nam

Annales de la faculté des sciences de Toulouse Mathématiques (2011)

  • Volume: 20, Issue: S2, page 137-151
  • ISSN: 0240-2963

Abstract

top
In this paper we discuss the value distribution problem for p -adic meromorphic functions and their derivatives, and prove a generalized version of the Hayman Conjecture for p -adic meromorphic functions.

How to cite

top

Khoai, Ha Huy, and Hoai An, Vu. "Value distribution problem for $p$-adic meromorphic functions and their derivatives." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 137-151. <http://eudml.org/doc/219858>.

@article{Khoai2011,
abstract = {In this paper we discuss the value distribution problem for $p$-adic meromorphic functions and their derivatives, and prove a generalized version of the Hayman Conjecture for $p$-adic meromorphic functions.},
affiliation = {Institute of Mathematics,18 Hoang Quoc Viet, 10307, Hanoi, Viet Nam; Hai Duong Pedagogical College, Hai Duong, Viet Nam},
author = {Khoai, Ha Huy, Hoai An, Vu},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {-adic meromorphic function; value distribution},
language = {eng},
month = {4},
number = {S2},
pages = {137-151},
publisher = {Université Paul Sabatier, Toulouse},
title = {Value distribution problem for $p$-adic meromorphic functions and their derivatives},
url = {http://eudml.org/doc/219858},
volume = {20},
year = {2011},
}

TY - JOUR
AU - Khoai, Ha Huy
AU - Hoai An, Vu
TI - Value distribution problem for $p$-adic meromorphic functions and their derivatives
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 137
EP - 151
AB - In this paper we discuss the value distribution problem for $p$-adic meromorphic functions and their derivatives, and prove a generalized version of the Hayman Conjecture for $p$-adic meromorphic functions.
LA - eng
KW - -adic meromorphic function; value distribution
UR - http://eudml.org/doc/219858
ER -

References

top
  1. Alotaibi (A.).— On the Zeros of a f ( f ( k ) ) n for n 2 , Computational Methods and Function Theory, Vol. 4, No.1, p. 227-235 (2004). Zbl1056.30027MR2081676
  2. Bergweiler (W.) and Eremenko (A.).— On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11, p. 355-373 (1995). Zbl0830.30016MR1344897
  3. Boutabaa (A.) and Escassut (A.).— Urs and Ursim for p-adic meromorphic functions inside a disk, Proc. Edinburgh Math. Soc., 44, p. 485-504 (2001). Zbl1002.12008MR1875765
  4. Chen (H. H.) and Fang (M. L.).— On the value distribution of f n f , Sci. China Ser. A, 38, p. 789-798 (1995). Zbl0839.30026MR1360682
  5. Clunie (J.).— On a result of Hayman, J. London Math. Soc. 42, p. 389-392 (1967). Zbl0169.40801MR214769
  6. Escassut (A.).— Analytic Elements in P-dic Analysis, World Scientific Publishing (1995). Zbl0933.30030MR1370442
  7. Ha Huy Khoai.— On p-adic meromorphic functions, Duke Math. J. 50, p. 695-711 (1983). Zbl0544.30039MR714825
  8. Ha Huy Khoai.— Height of p -adic holomorphic functions and applications, International Symposium “Holomorphic Mappings, Diophantine Geometry and Related Topics” (Kyoto, 1992). Surikaisekikenkyusho Kokyuroku No. 819, p. 96-105 (1993). MR1247071
  9. Ha Huy Khoai and Vu Hoai An.— Value distribution for p-adic hypersurfaces, Taiwanese Journal of Mathematics, Vol. 7, No.1, p. 51-67 (2003). Zbl1090.32008MR1961038
  10. Ha Huy Khoai and My Vinh Quang.— On p-adic Nevanlinna theory, Lecture Notes in Math. 1351, p. 146-158 (1988). Zbl0673.30035MR982080
  11. Hayman (W. K.).— Picard values of meromorphic functions and their derivativesAnn. Math. (2) 70, p. 9-42 (1959). Zbl0088.28505MR110807
  12. Hayman (W. K.).— Research Problems in Function Theory, The Athlone Press University of London, London (1967). Zbl0158.06301MR217268
  13. Hu (P.C.) and Yang (C.C.).— Meromorphic functions over Non-Archimedean fields, Kluwer Academic Publishers (2000). Zbl0984.30027MR1794326
  14. Lahiri (I.) and Dewan (S.).— Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J. 26, 95-100 (2003). Zbl1077.30025MR1966685
  15. Nevo (Sh.), Pang (X. C.) and Zalcman (L.).— Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros, Electronic Research Announcements of the American Mathematical Society, Volume 12, p. 37-43 (March 31, 2006). Zbl1186.30036MR2218629
  16. Ojeda (J.).— Hayman’s conjecture in a p -adic field, Taiwanese J. Math. 12, N.9, p. 2295-2313 (2008). Zbl1189.30088MR2479056
  17. Pang (X. C.), Nevo (Sh.) and Zalcman (L.).— Quasinormal families of meromorphic functions, Rev. Mat. Iberoamericana 21, p. 249-262 (2005). Zbl1084.30037MR2155021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.