Value distribution problem for -adic meromorphic functions and their derivatives
Ha Huy Khoai[1]; Vu Hoai An[2]
- [1] Institute of Mathematics,18 Hoang Quoc Viet, 10307, Hanoi, Viet Nam
- [2] Hai Duong Pedagogical College, Hai Duong, Viet Nam
Annales de la faculté des sciences de Toulouse Mathématiques (2011)
- Volume: 20, Issue: S2, page 137-151
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topKhoai, Ha Huy, and Hoai An, Vu. "Value distribution problem for $p$-adic meromorphic functions and their derivatives." Annales de la faculté des sciences de Toulouse Mathématiques 20.S2 (2011): 137-151. <http://eudml.org/doc/219858>.
@article{Khoai2011,
abstract = {In this paper we discuss the value distribution problem for $p$-adic meromorphic functions and their derivatives, and prove a generalized version of the Hayman Conjecture for $p$-adic meromorphic functions.},
affiliation = {Institute of Mathematics,18 Hoang Quoc Viet, 10307, Hanoi, Viet Nam; Hai Duong Pedagogical College, Hai Duong, Viet Nam},
author = {Khoai, Ha Huy, Hoai An, Vu},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {-adic meromorphic function; value distribution},
language = {eng},
month = {4},
number = {S2},
pages = {137-151},
publisher = {Université Paul Sabatier, Toulouse},
title = {Value distribution problem for $p$-adic meromorphic functions and their derivatives},
url = {http://eudml.org/doc/219858},
volume = {20},
year = {2011},
}
TY - JOUR
AU - Khoai, Ha Huy
AU - Hoai An, Vu
TI - Value distribution problem for $p$-adic meromorphic functions and their derivatives
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2011/4//
PB - Université Paul Sabatier, Toulouse
VL - 20
IS - S2
SP - 137
EP - 151
AB - In this paper we discuss the value distribution problem for $p$-adic meromorphic functions and their derivatives, and prove a generalized version of the Hayman Conjecture for $p$-adic meromorphic functions.
LA - eng
KW - -adic meromorphic function; value distribution
UR - http://eudml.org/doc/219858
ER -
References
top- Alotaibi (A.).— On the Zeros of for , Computational Methods and Function Theory, Vol. 4, No.1, p. 227-235 (2004). Zbl1056.30027MR2081676
- Bergweiler (W.) and Eremenko (A.).— On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana 11, p. 355-373 (1995). Zbl0830.30016MR1344897
- Boutabaa (A.) and Escassut (A.).— Urs and Ursim for p-adic meromorphic functions inside a disk, Proc. Edinburgh Math. Soc., 44, p. 485-504 (2001). Zbl1002.12008MR1875765
- Chen (H. H.) and Fang (M. L.).— On the value distribution of Sci. China Ser. A, 38, p. 789-798 (1995). Zbl0839.30026MR1360682
- Clunie (J.).— On a result of Hayman, J. London Math. Soc. 42, p. 389-392 (1967). Zbl0169.40801MR214769
- Escassut (A.).— Analytic Elements in P-dic Analysis, World Scientific Publishing (1995). Zbl0933.30030MR1370442
- Ha Huy Khoai.— On p-adic meromorphic functions, Duke Math. J. 50, p. 695-711 (1983). Zbl0544.30039MR714825
- Ha Huy Khoai.— Height of -adic holomorphic functions and applications, International Symposium “Holomorphic Mappings, Diophantine Geometry and Related Topics” (Kyoto, 1992). Surikaisekikenkyusho Kokyuroku No. 819, p. 96-105 (1993). MR1247071
- Ha Huy Khoai and Vu Hoai An.— Value distribution for p-adic hypersurfaces, Taiwanese Journal of Mathematics, Vol. 7, No.1, p. 51-67 (2003). Zbl1090.32008MR1961038
- Ha Huy Khoai and My Vinh Quang.— On p-adic Nevanlinna theory, Lecture Notes in Math. 1351, p. 146-158 (1988). Zbl0673.30035MR982080
- Hayman (W. K.).— Picard values of meromorphic functions and their derivativesAnn. Math. (2) 70, p. 9-42 (1959). Zbl0088.28505MR110807
- Hayman (W. K.).— Research Problems in Function Theory, The Athlone Press University of London, London (1967). Zbl0158.06301MR217268
- Hu (P.C.) and Yang (C.C.).— Meromorphic functions over Non-Archimedean fields, Kluwer Academic Publishers (2000). Zbl0984.30027MR1794326
- Lahiri (I.) and Dewan (S.).— Value distribution of the product of a meromorphic function and its derivative, Kodai Math. J. 26, 95-100 (2003). Zbl1077.30025MR1966685
- Nevo (Sh.), Pang (X. C.) and Zalcman (L.).— Picard-Hayman behavior of derivatives of meromorphic functions with multiple zeros, Electronic Research Announcements of the American Mathematical Society, Volume 12, p. 37-43 (March 31, 2006). Zbl1186.30036MR2218629
- Ojeda (J.).— Hayman’s conjecture in a -adic field, Taiwanese J. Math. 12, N.9, p. 2295-2313 (2008). Zbl1189.30088MR2479056
- Pang (X. C.), Nevo (Sh.) and Zalcman (L.).— Quasinormal families of meromorphic functions, Rev. Mat. Iberoamericana 21, p. 249-262 (2005). Zbl1084.30037MR2155021
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.