Natural affinors on the extended -th order tangent bundles
Gancarzewicz, Jacek; Kolář, Ivan
- Proceedings of the Winter School "Geometry and Physics", Publisher: Circolo Matematico di Palermo(Palermo), page [95]-100
Access Full Article
topAbstract
topHow to cite
topGancarzewicz, Jacek, and Kolář, Ivan. "Natural affinors on the extended $r$-th order tangent bundles." Proceedings of the Winter School "Geometry and Physics". Palermo: Circolo Matematico di Palermo, 1993. [95]-100. <http://eudml.org/doc/220633>.
@inProceedings{Gancarzewicz1993,
abstract = {The authors prove that all natural affinors (i.e. tensor fields of type (1,1) on the extended $r$-th order tangent bundle $E^rM$ over a manifold $M$) are linear combinations (the coefficients of which are smooth functions on $\mathcal \{R\}$) of four natural affinors defined in this work.},
author = {Gancarzewicz, Jacek, Kolář, Ivan},
booktitle = {Proceedings of the Winter School "Geometry and Physics"},
keywords = {Proceedings; Geometry; Srní (Czechoslovakia); Physics},
location = {Palermo},
pages = {[95]-100},
publisher = {Circolo Matematico di Palermo},
title = {Natural affinors on the extended $r$-th order tangent bundles},
url = {http://eudml.org/doc/220633},
year = {1993},
}
TY - CLSWK
AU - Gancarzewicz, Jacek
AU - Kolář, Ivan
TI - Natural affinors on the extended $r$-th order tangent bundles
T2 - Proceedings of the Winter School "Geometry and Physics"
PY - 1993
CY - Palermo
PB - Circolo Matematico di Palermo
SP - [95]
EP - 100
AB - The authors prove that all natural affinors (i.e. tensor fields of type (1,1) on the extended $r$-th order tangent bundle $E^rM$ over a manifold $M$) are linear combinations (the coefficients of which are smooth functions on $\mathcal {R}$) of four natural affinors defined in this work.
KW - Proceedings; Geometry; Srní (Czechoslovakia); Physics
UR - http://eudml.org/doc/220633
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.