Transmission of convergence

Neugebauer, Christoph J.

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 193-215

Abstract

top
If E ( f ) = { x : lim sup f μ j ( x ) > lim inf f μ j ( x ) } , we examine the type of convergence of g k to f so that | E ( g k ) | M , k = 1 , 2 , , implies | E ( f ) | M .

How to cite

top

Neugebauer, Christoph J.. "Transmission of convergence." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 2003. 193-215. <http://eudml.org/doc/220957>.

@inProceedings{Neugebauer2003,
abstract = {If $E(f)=\lbrace x:\limsup f\star \mu _j(x)>\liminf f\star \mu _j(x)\rbrace $, we examine the type of convergence of $g_k$ to $f$ so that $|E(g_k)|\le M$, $k=1,2,\dots $, implies $|E(f)|\le M$.},
author = {Neugebauer, Christoph J.},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {measure; convergence; maximal operator; minimal operator},
location = {Praha},
pages = {193-215},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Transmission of convergence},
url = {http://eudml.org/doc/220957},
year = {2003},
}

TY - CLSWK
AU - Neugebauer, Christoph J.
TI - Transmission of convergence
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 2003
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 193
EP - 215
AB - If $E(f)=\lbrace x:\limsup f\star \mu _j(x)>\liminf f\star \mu _j(x)\rbrace $, we examine the type of convergence of $g_k$ to $f$ so that $|E(g_k)|\le M$, $k=1,2,\dots $, implies $|E(f)|\le M$.
KW - measure; convergence; maximal operator; minimal operator
UR - http://eudml.org/doc/220957
ER -

References

top
  1. Uribe D. Cruz,- Neugebauer C. J., Weighted norm inequalities for the geometric maximal operator, Publ. Mat. 42 (1998), 239–263. Zbl 0919.42014, MR 99e:42029. (1998) MR1628101
  2. Uribe D. Cruz,- SFO,, Neugebauer C. J., Olesen V., Norm inequalities for the minimal and maximal operator, and differentiation of the integral, Publ. Mat. 41 (1997), 577–604. Zbl 0903.42007, MR 99b:42022. (1997) MR1485505
  3. Uribe D. Cruz,- SFO,, Neugebauer C. J., Olesen V., Weighted norm inequalities for a family of one-sided minimal operators, Illinois J. Math. 41 (1997), 77–92. Zbl 0871.42019, MR 99b:42021. (1997) MR1433187
  4. Cuerva J. García,- Francia J. L. Rubio de, Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. Zbl 0578.46046, MR 87d:42023. (1985) MR0807149
  5. Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 45 #2461. (1972) Zbl0236.26016MR0293384
  6. Stein E. M., Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43. Princeton University Press, Princeton, N. J., 1993. Zbl 0821.42001, MR 95c:42002. (1993) Zbl0821.42001MR1232192

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.