Transmission of convergence
- Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 193-215
Access Full Article
topAbstract
topHow to cite
topNeugebauer, Christoph J.. "Transmission of convergence." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 2003. 193-215. <http://eudml.org/doc/220957>.
@inProceedings{Neugebauer2003,
abstract = {If $E(f)=\lbrace x:\limsup f\star \mu _j(x)>\liminf f\star \mu _j(x)\rbrace $, we examine the type of convergence of $g_k$ to $f$ so that $|E(g_k)|\le M$, $k=1,2,\dots $, implies $|E(f)|\le M$.},
author = {Neugebauer, Christoph J.},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {measure; convergence; maximal operator; minimal operator},
location = {Praha},
pages = {193-215},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Transmission of convergence},
url = {http://eudml.org/doc/220957},
year = {2003},
}
TY - CLSWK
AU - Neugebauer, Christoph J.
TI - Transmission of convergence
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 2003
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 193
EP - 215
AB - If $E(f)=\lbrace x:\limsup f\star \mu _j(x)>\liminf f\star \mu _j(x)\rbrace $, we examine the type of convergence of $g_k$ to $f$ so that $|E(g_k)|\le M$, $k=1,2,\dots $, implies $|E(f)|\le M$.
KW - measure; convergence; maximal operator; minimal operator
UR - http://eudml.org/doc/220957
ER -
References
top- Uribe D. Cruz,- Neugebauer C. J., Weighted norm inequalities for the geometric maximal operator, Publ. Mat. 42 (1998), 239–263. Zbl 0919.42014, MR 99e:42029. (1998) MR1628101
- Uribe D. Cruz,- SFO,, Neugebauer C. J., Olesen V., Norm inequalities for the minimal and maximal operator, and differentiation of the integral, Publ. Mat. 41 (1997), 577–604. Zbl 0903.42007, MR 99b:42022. (1997) MR1485505
- Uribe D. Cruz,- SFO,, Neugebauer C. J., Olesen V., Weighted norm inequalities for a family of one-sided minimal operators, Illinois J. Math. 41 (1997), 77–92. Zbl 0871.42019, MR 99b:42021. (1997) MR1433187
- Cuerva J. García,- Francia J. L. Rubio de, Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985. Zbl 0578.46046, MR 87d:42023. (1985) MR0807149
- Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. Zbl 0236.26016, MR 45 #2461. (1972) Zbl0236.26016MR0293384
- Stein E. M., Harmonic analysis: real variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series 43. Princeton University Press, Princeton, N. J., 1993. Zbl 0821.42001, MR 95c:42002. (1993) Zbl0821.42001MR1232192
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.