Extension theory for Sobolev spaces on open sets with Lipschitz boundaries

Burenkov, Viktor I.

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 1-49

How to cite

top

Burenkov, Viktor I.. "Extension theory for Sobolev spaces on open sets with Lipschitz boundaries." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 1999. 1-49. <http://eudml.org/doc/221162>.

@inProceedings{Burenkov1999,
author = {Burenkov, Viktor I.},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)},
location = {Praha},
pages = {1-49},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {Extension theory for Sobolev spaces on open sets with Lipschitz boundaries},
url = {http://eudml.org/doc/221162},
year = {1999},
}

TY - CLSWK
AU - Burenkov, Viktor I.
TI - Extension theory for Sobolev spaces on open sets with Lipschitz boundaries
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 1999
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 1
EP - 49
KW - Spring school; Proceedings; Nonlinear analysis; Function spaces; Prague (Czech Republic)
UR - http://eudml.org/doc/221162
ER -

References

top
  1. Adams R. A., Sobolev spaces, Academic Press, New York 1975. (1975) Zbl0314.46030MR0450957
  2. Babich V. M., On the extension of functions, (Russian). Uspekhi Mat. Nauk 8 (1953), 111–113. (1953) MR0056675
  3. Besov O. V., in V. P. Il,’ Kudryavtsev L. D., Lizorkin P. I., skii S. M. Nikol,’, Embedding theory for classes of differentiable functions of several variables, (Russian). Proc. Sympos. in honour of the 60th birthday of academician S. L. Sobolev, Inst. Mat. Sibirsk. Otdel. Akad. Nauk. SSSR, Nauka, Moscow 1970, 38–63. (1970) 
  4. Besov O. V., in V. P. Il,’ skii S. M. Nikol,’, Integral representation of functions and embedding theorems, (Russian). 1st ed., Nauka, Moscow 1975; 2nd ed., Nauka, Moscow 1996 (Russian); English transl. of 1st ed., Vols. 1, 2, Wiley, 1979. (1975) MR0430771
  5. Burago, Yu. D., ya V. G. Maz,’, Some problems of the potential theory and function theory for domains with irregular boundaries, Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklov 3 (1967), 1–152 (Russia); English transl.: Seminars in Math., V. A. Steklov Math. Inst., Leningrad 3 (1969). (1967) 
  6. Burenkov V. I., Some properties of classes of differentiable functions in connection with embedding and extension theorems, (Russian). Ph.D. thesis, Moscow, Steklov Math. Inst. (1966), 145 pp. (1966) 
  7. Burenkov V. I., Embedding and extension theorems for classes of differentiable functions of several variables defined on the whole space, (Russian). Itogi Nauki i Tekhniki: Mat. Anal. 1965, VINITI, Moscow 1966, 71–155; English transl.: Progress in Math. 2, Plenum Press, 1968. (1965) MR0206698
  8. Burenkov V. I., On regularized distance, (Russian). Trudy MIREA. Issue 67. Mathematics (1973), 113–117. (1973) MR0499023
  9. Burenkov V. I., On the density of infinitely differentiable functions in Sobolev spaces for an arbitrary open set, (Russian). Trudy Mat. Inst. Steklov 131 (1974), 39–50; English transl.: Proc. Steklov Inst. Math. 131 (1974). (1974) Zbl0313.46033MR0367642
  10. Burenkov V. I., On the extension of functions with preservation and with deterioration of the differential properties, (Russian). Dokl. Akad. Nauk SSSR 224 (1975), 269–272; English transl.: Soviet Math. Dokl. 16 (1975). (1975) Zbl0351.46022MR0405083
  11. Burenkov V. I., On a certain method for extending differentiable functions, (Russian). Trudy Mat. Inst. Steklov 140 (1976), 27–67; English transl.: Proc. Steklov Inst. Math. 140 (1976). (1976) 
  12. Burenkov V. I., On the extension of functions with preservation of semi-norm, (Russian). Dokl. Akad. Nauk SSSR 228 (1976), 779–782; English transl.: Soviet Math. Dokl. 17 (1976). (1976) MR0412796
  13. Burenkov V. I., On partitions of unity, (Russian). Trudy Mat. Inst. Steklov 150 (1979), 24–30; English transl.: Proc. Steklov Inst. Math. 150 (1979). (1979) Zbl0417.46036MR0544002
  14. Burenkov V. I., Investigation of spaces of differentiable functions with irregular domain, (Russian). D.Sc. thesis, Steklov Math. Inst., Moscow 1982, 312 pp. (1982) 
  15. Burenkov V. I., On estimates of the norms of extension operators, (Russian). 9-th All-Union school on the theory of operators in function spaces. Ternopol. Abstracts (1984), 19–20. (1984) 
  16. Burenkov V. I., Extension of functions with preservation of Sobolev semi-norm, (Russian). Trudy Mat. Inst. Steklov 172 (1985), 81–95; English transl.: Proc. Steklov Inst. Math. 172 (1985). (1985) MR0810420
  17. Burenkov V. I., Extension theorems for Sobolev spaces, In: Proc. of the conference “Functional analysis, partial differential equations and applications” in honour of V. Maz’ya, held in Rostock, 31. 08.–4. 09. 1998 (to appear). (1998) MR1747873
  18. Burenkov V. I., On sharp constants in the inequalities for the norms of intermediate derivatives on a finite interval, II, (Russian). Trudy Mat. Inst. Steklov 173 (1986), 38–49; English transl.: Proc. Steklov Inst. Math. 173 (1986). (1986) MR0864833
  19. Burenkov V. I., Sobolev spaces on domains, B.G. Teubner, Stuttgart 1998. (1998) Zbl0893.46024MR1622690
  20. Burenkov V. I., Compactness of embeddings for Sobolev and more general spaces and extensions with preservation of some smoothness, To appear. 
  21. Burenkov V. I., Fain B. L., On the extension of functions in Sobolev spaces from a strip with deteriorations of class, (Russian). Deposited in VINITY Ac. Sci. USSR, No 2511–74 (1975), 12 pp. (1975) 
  22. Burenkov V. I., Fain B. L., On the extension of functions in anisotropic spaces with preservation of class, (Russian). Dokl. Akad. Nauk SSSR 228 (1976), 525–528; English transl.: Soviet Math. Dokl. 17 (1976). (1976) MR0410359
  23. Burenkov V. I., Fain B. L., On the extension of functions in anisotropic classes with preservation of the class, (Russian). Trudy Mat. Inst. Steklov 150 (1979), 52–66; English transl.: Proc. Steklov Inst. Math. 150 (1979). (1979) MR0544004
  24. Burenkov V. I., dman M. L. Gol,’ 1979, On the extension of functions in (Russian). Trudy Mat. Inst. Steklov, 150, (,))., 31–51; English transl.: Proc. Steklov Inst. Math. 150 (197,9 MR0544003
  25. Burenkov V. I., Gorbunov A. L., Sharp estimates for the minimal norm of an extension operator for Sobolev spaces, (Russian). Dokl. Akad. Nauk SSSR 330 (1993), 680–682; English transl.: Soviet Math. Dokl. 47 (1993). (1993) MR1242163
  26. Burenkov V. I., Gorbunov A. L., Sharp estimates for the minimal norm of an extension operator for Sobolev spaces, (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 61 (1997), 1–44. (1997) MR1440311
  27. Burenkov V. I., Kalyabin G. A., Lower estimates of the norms of extension operators for Sobolev spaces on the halfline, To appear in Math. Nachr. Zbl0986.46021MR1784635
  28. Burenkov V. I., Popova E. M., On improving extension operators with the help of the operators of approximation with preservation of the boundary values, (Russian). Trudy Mat. Inst. Steklov 173 (1986), 50–54; English transl.: Proc. Steklov Inst. Math. 173 (1986). (1986) MR0864834
  29. Burenkov V. I., Schulze B.-W., Tarkhanov N. N., Extension operators for Sobolev spaces commuting with a given transform, Glasgow Math. J. 40 (1998), 291–296. (1998) Zbl0913.35160MR1630199
  30. Calderón A. P., Lebesgue spaces of differentiable functions and distributions, Proc. Sympos. Pure Math. IV (1961), 33–49. (1961) Zbl0195.41103MR0143037
  31. Chua S. K., Extension theorems on weighted Sobolev spaces, Indiana. Univ. Math. 117 (1992), 1027–1076. (1992) Zbl0767.46025MR1206339
  32. Fain B. L., The extension of functions from an infinite cylinder, (Russian). Trudy Mat. Inst. Steklov 140 (1976), 277–284; English transl.: Proc. Steklov Inst. Math. J. 140 (1979). (1976) Zbl0397.46026MR0626997
  33. Fain B. L., On extension of functions in Sobolev spaces for irregular domains with preservation of the smoothness exponent, (Russian). Dokl. Akad. Nauk SSSR 285 (1985), 296–301; English transl.: Soviet Math. Dokl. 30 (1985). (1985) MR0820855
  34. Garofalo N., Nhieu D. M., Lipschitz continuity, global smoothness approximation and extension theorems for Sobolev functions in Carnot-Carathéodory spaces, Preprint, Purdue Univ. (1996). (1996) MR1631642
  35. dshtein V. M. Gol,’, Extension of functions with first generalized derivatives from planar domains, (Russian). Dokl. Akad. Nauk SSSR 257 (1981), 268–271; English transl.: Soviet Math. Dokl. 23 (1981). (1981) MR0610166
  36. dshtein V. M. Gol,’ Reshetnyak, Yu. G., Foundations of the theory of functions with generalized derivatives and quasiconformal mappings, (Russian). Nauka, Moscow 1983; English transl.: Reidel, Dordrecht 1989. (1983) MR0738784
  37. dshtein V. M. Gol,’ Sitnikov V. N., On extension of functions in the class W p 1 across Hölder boundaries, (Russian). In “Embedding theorems and their applications”. Trudy Semin. S. L. Sobolev, Novosibirsk 1 (1982), 31–43. (1982) 
  38. dshtein V. M. Gol,’ yanov S. K. Vodop,’, Prolongement des fonctions de classe L p 1 et applications quasiconformes, C. R. Acad Sci. Paris Sér. A 290 (1983), 453–456. (1983) 
  39. Herron D. A., Koskela P., Uniform and Sobolev extension domains, Proc. Amer. Math. Soc. 114, 2 (1992), 483–489. (1992) Zbl0757.30022MR1075947
  40. Hestenes M. R., Extension of the range of a differentiable function, Duke Math. J. 8 (1941), 183–192. (1941) Zbl0024.38602MR0003434
  41. Jones P. W., Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71–88. (1981) Zbl0489.30017MR0631089
  42. Kalyabin G. A., The least norm estimates for certain extension operators from convex planar domains, In: Conference in Mathematical Analysis and Applications in Honour of L. I. Hedberg’s Sixtieth Birthday. Abstracts. Linköping 1996, pp. 55–56. (1996) 
  43. Konovalov V. N., A criterion for extension of Sobolev spaces W ( r ) on bounded planar domains, (Russian). Dokl. Akad. Nauk SSSR 289 (1986), 36–39; English transl.: Soviet Math. Dokl. 33 (1986). (1986) MR0852285
  44. Kudryavtsev L. D., skii S. M. Nikol,’, Spaces of differentiable functions of several variables and the embedding theorems, (Russian). Contemporary problems in mathematics. Fundamental directions. V. 26 (1988). Analysis – 3. VINITI, Moscow, 5–157. (1988) MR1178111
  45. Kufner A., Weighted Sobolev spaces, John Wiley and Sons, Chichester 1985. (1985) Zbl0579.35021MR0802206
  46. Kufner A., John O., Fučík S., Function spaces, Academia, Prague & Noordhoff International Publishing, Leyden 1977. (1977) MR0482102
  47. Lieb E. H., Loss M., Analysis, Amer. Math. Soc. 1997. (1997) 
  48. ya V. G. Maz,’, Sobolev spaces, (Russian). LGU, Leningrad 1984; English transl.: Springer-Verlag, Springer Series in Soviet Mathematics, Berlin 1985. (1984) MR0807364
  49. ya V. G. Maz,’ Poborchii S. V., On extension of functions in Sobolev spaces to the exterior of a domain with a peak vertex on the boundary, (Russian). Dokl. Akad. Nauk SSSR 275 (1984), 1066–1069; English transl.: Soviet Math. Dokl. 29 (1984). (1984) MR0745847
  50. ya V. G. Maz,’ Poborchii S. V., Extension of functions in Sobolev spaces to the exterior of a domain with a peak vertex on the boundary I, (Russian). Czechoslovak Math. J. 36 (1986), 634–661. (1986) MR0863193
  51. ya V. G. Maz,’ Poborchii S. V., Extension of functions in Sobolev spaces to the exterior of a domain with a peak vertex on the boundary II, (Russian). Czechoslovak Math. J. 37 (1987), 128–150. (1987) MR0875135
  52. ya V. G. Maz,’ Poborchii S. V., Extension of functions in Sobolev spaces on parameter dependent domains, Math. Nachr. 178 (1996), 5–41. (1996) MR1380702
  53. ya V. G. Maz,’ Poborchii S. V., Differentiable functions on bad domains, World Scientific Publishing, Singapore 1997. (1997) MR1643072
  54. skii S. M. Nikol,’, On the solutions of the polyharmonic equation by a variational method, (Russian). Dokl. Akad. Nauk SSSR 88 (1953), 409–411. (1953) 
  55. skii S. M. Nikol,’, On embedding, extension and approximation theorems for differentiable functions of several variables, (Russian). Uspekhi Mat. Nauk 16 (1961), 63–114; English transl.: Russian Math. Surveys 16 (1961). (1961) 
  56. skii S. M. Nikol,’, Approximation of functions of several variables and embedding theorems, 1st ed., Nauka, Moscow 1969 (Russian); 2nd ed., Nauka, Moscow 1977 (Russian); English transl. of 1st ed., Springer-Verlag, Berlin 1975. (1969) 
  57. Popova E. M., On improving extension operators with the help of the operators of approximation with preservation of the boundary values, (Russian). In: “Function spaces and applications to differential equations”, Peoples’ Friendship University of Russia, Moscow (1992), 154–165. (1992) 
  58. Rychkov V. S., On restrictions and extensions of Besov and Triebel-Lizorkin spaces with respect to Lipschitz domains, To appear. MR1721827
  59. Seeley R. T., Extension of C -functions defined in halfspace, Proc. Amer. Math. Soc. 15 (1964), 625–626. (1964) Zbl0127.28403MR0165392
  60. Sobolev S. L., Applications of functional analysis in mathematical physics, 1st ed.: LGU, Leningrad 1950 (Russian). 2nd ed.: NGU, Novosibirsk 1963 (Russian). 3rd ed.: Nauka, Moscow 1988 (Russian). English translation of 3rd ed.: Translations of Mathematical Monographs, 90, Amer. Math. Soc., Providence, RI 1991. (1950) MR0165337
  61. Sobolev S. L., Introduction to the theory of cubature formulae, (Russian). Nauka, Moscow 1974. (1974) MR0478560
  62. Sobolev S. L., skii S. M. Nikol,’, Embedding theorems, (Russian). Vol. 1, Proc. Fourth All-Union Math. Congress, 1961, Nauka, Leningrad 1963, 227–242; English transl.: Amer. Math. Soc. Transl. (2), 87 (1970). (1961) MR0171188
  63. Stein E. M., Singular integrals and differentiability properties of functions, Princeton Univ. Press, Princeton 1970. (1970) Zbl0207.13501MR0290095
  64. Triebel H., Theory of function spaces, Birkhäuser, Basel 1983; and Akad. Verlag. Geest & Portig, Leipzig 1983. (1983) Zbl0546.46028MR0781540
  65. Triebel H., Theory of function spaces. II, Birkhäuser, Basel 1992. (1992) Zbl0763.46025MR1163193
  66. Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Embedding theorems and their applications to differential equations, (Russian). Nauka, Novosibirsk 1984. (1984) 
  67. yanov S. K. Vodop,’ dshtein V. M. Gol,’ Latfullin T. G., A criterion for extension of functions in class L 2 1 from unbounded planar domains, (Russian). Sibirsk. Mat. Zh. 34 (1979), 416–419; English transl.: Siberian Math. J. 34 (1979). (1979) 
  68. yanov S. K. Vodop,’ dshtein V. M. Gol,’ Reshetnyak, Yu. G., On geometric properties of functions with first generalized derivatives, (Russian). Uspekhi Mat. Nauk 34 (1979), no. 1(205), 3–74; English transl.: Russian Math. Surveys 20 (1985). (1979) 
  69. Whitney H., Analytic extension of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89. (1934) MR1501735
  70. Ziemer W. P., Weakly differentiable functions, Springer-Verlag, New York 1989. (1989) Zbl0692.46022MR1014685
  71. Zobin N., Whitney’s problem: extendability of functions and intrinsic metric, C. R. Acad. Sci. Paris 320, 1 (1995), 781–786. (1995) Zbl0826.46017MR1326682

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.