A la recherche du spectre perdu: An invitation to nonlinear spectral theory

Appell, Jürgen

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 1-20

Abstract

top
We give a survey on spectra for various classes of nonlinear operators, with a particular emphasis on a comparison of their advantages and drawbacks. Here the most useful spectra are the asymptotic spectrum by M. Furi, M. Martelli and A. Vignoli (1978), the global spectrum by W. Feng (1997), and the local spectrum (called “phantom”) by P. Santucci and M. Väth (2000). In the last part we discuss these spectra for homogeneous operators (of any degree), and derive a discreteness result and a nonlinear Fredholm alternative for such operators. This may be applied to an eigenvalue problem for the p -Laplace operator which arises in various fields of applied mathematics, mechanics, and physics.

How to cite

top

Appell, Jürgen. "A la recherche du spectre perdu: An invitation to nonlinear spectral theory." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 2003. 1-20. <http://eudml.org/doc/221387>.

@inProceedings{Appell2003,
abstract = {We give a survey on spectra for various classes of nonlinear operators, with a particular emphasis on a comparison of their advantages and drawbacks. Here the most useful spectra are the asymptotic spectrum by M. Furi, M. Martelli and A. Vignoli (1978), the global spectrum by W. Feng (1997), and the local spectrum (called “phantom”) by P. Santucci and M. Väth (2000). In the last part we discuss these spectra for homogeneous operators (of any degree), and derive a discreteness result and a nonlinear Fredholm alternative for such operators. This may be applied to an eigenvalue problem for the $p$-Laplace operator which arises in various fields of applied mathematics, mechanics, and physics.},
author = {Appell, Jürgen},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Nonlinear spectrum; nonlinear eigenvalue problem; homogeneous operator; coincidence theorem; discreteness theorem; nonlinear Fredholm alternative; $p$-Laplace operator},
location = {Praha},
pages = {1-20},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {A la recherche du spectre perdu: An invitation to nonlinear spectral theory},
url = {http://eudml.org/doc/221387},
year = {2003},
}

TY - CLSWK
AU - Appell, Jürgen
TI - A la recherche du spectre perdu: An invitation to nonlinear spectral theory
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 2003
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 1
EP - 20
AB - We give a survey on spectra for various classes of nonlinear operators, with a particular emphasis on a comparison of their advantages and drawbacks. Here the most useful spectra are the asymptotic spectrum by M. Furi, M. Martelli and A. Vignoli (1978), the global spectrum by W. Feng (1997), and the local spectrum (called “phantom”) by P. Santucci and M. Väth (2000). In the last part we discuss these spectra for homogeneous operators (of any degree), and derive a discreteness result and a nonlinear Fredholm alternative for such operators. This may be applied to an eigenvalue problem for the $p$-Laplace operator which arises in various fields of applied mathematics, mechanics, and physics.
KW - Nonlinear spectrum; nonlinear eigenvalue problem; homogeneous operator; coincidence theorem; discreteness theorem; nonlinear Fredholm alternative; $p$-Laplace operator
UR - http://eudml.org/doc/221387
ER -

References

top
  1. Appell J., Pascale E. De, Vignoli A., A comparison of different spectra for nonlinear operators, Nonlinear Anal., Theory Methods Appl. 40A (2000), 73–90. Zbl 0956.47035, MR 2001g:47117. Zbl0956.47035
  2. Appell J., Dörfner M., Some spectral theory for nonlinear operators, Nonlinear Anal., Theory Methods Appl. 28 (1997), 1955–1976. Zbl 0876.47042, MR 98e:47098. (1997) Zbl0876.47042MR1436365
  3. Appell J., Giorgieri E., Väth M., Nonlinear spectral theory for homogeneous operators, Nonlinear Funct. Anal. Appl. 7 (2002), 589–618. Zbl1045.47053MR1959638
  4. Binding P. A., Drábek P., Huang Y. X., On the Fredholm alternative for the p -Laplacian, Proc. Amer. Math. Soc. 125 (1997), 3555–3559. Zbl 0882.35049, MR 98b:35058. (1997) Zbl0882.35049MR1416077
  5. Pino M. del, Drábek P., Manásievich R., The Fredholm alternative at the first eigenvalue for the one dimensional p -Laplacian, J. Differ. Equations 151 (1999), 386–419. Zbl 0931.34065, MR 99m:34042. (1999) MR1669705
  6. Drábek P., On the Fredholm alternative for nonlinear homogeneous operators, In: Applied nonlinear analysis (A. Sequeira et al., eds.). Kluwer Academic/Plenum Publishing, New York, 1999, 41–48. Zbl 0956.47036, MR 1 727 439. (1999) Zbl0956.47036MR1727439
  7. Drábek P., Analogy of the Fredholm alternative for nonlinear operators, RIMS Kokyuroku 1105 (1999), 31–38. Zbl 0951.47503. (1999) Zbl0951.47503MR1747554
  8. Drábek P., Fredholm alternative for the p -Laplacian: yes or no?, In: Function Spaces, Differential Operators and Nonlinear Analysis. Proceedings of the conference, Syöte, Finland, June 10–16, 1999 (V. Mustonen and J. Rákosník, eds.). Math. Inst. Acad. Sci. Czech Rep., Prague, 2000, 57–64. Zbl 0966.34012, MR 2000m:34042. (1999) MR1755297
  9. Drábek P., Girg P., Manásievich R., Generic Fredholm alternative-type results for the one dimensional p -Laplacian, Nonlinear Differential Equations Appl. 8 (2001), 285–298. Zbl pre01652489, MR 2002f:34027. MR1841260
  10. Drábek P., Holubová G., Fredholm alternative for the p -Laplacian in higher dimensions, J. Math. Anal. Appl. 263 (2001), 182–194. Zbl 1002.35046,MR 2002h:35083. (194.) MR1864314
  11. Feng W., A new spectral theory for nonlinear operators and its applications, Abstr. Appl. Anal. 2 (1997), 163–183. Zbl 0952.47047, MR 99d:47061. (1997) Zbl0952.47047MR1604177
  12. Fučík S., Fredholm alternative for nonlinear operators in Banach spaces and its applications to differential and integral equations, Commentat. Math. Univ. Carol. 11 (1970), 271–284. Zbl 0995.42801, MR 42 #909. (1970) MR0266000
  13. Furi M., Stably solvable maps are unstable under small perturbations, Z. Anal. Anwend. 21 (2002), 203–208. Zbl pre01779543, MR 1 916 412. Zbl1016.47042MR1916412
  14. Furi M., Martelli M., Vignoli A., Stably solvable operators in Banach spaces, Atti Accad. Naz. Lincei, VIII. Ser., Rend. Cl. Sci. Fis. Mat. Nat. 60 (1976), 21–26. Zbl 0361.47024, MR 58 #7251. (1976) Zbl0361.47024MR0487632
  15. Furi M., Martelli M., Vignoli A., Contributions to the spectral theory for nonlinear operators in Banach spaces, Ann. Mat. Pura Appl., IV. Ser. 118 (1978), 229–294. Zbl 0409.47043, MR 80k:47070. (1978) Zbl0409.47043MR0533609
  16. Furi M., Martelli M., Vignoli A., On the solvability of nonlinear operator equations in normed spaces, Ann. Mat. Pura Appl., IV. Ser. 128 (1980), 321–343. Zbl 0456.47051, MR 83h:47047. (1980) Zbl0456.47051MR0591562
  17. Kachurovskij R. I., Regular points, spectrum and eigenfunctions of nonlinear operators, (Russian). Dokl. Akad. Nauk SSSR 188 (1969) 274–277. English transl. in Soviet Math. Dokl. 10 (1969), 1101–1105. Zbl 0197.40402. (1969) Zbl0197.40402MR0251599
  18. Maddox I. J., Wickstead A. W., The spectrum of uniformly Lipschitz mappings, Proc. Royal Irish Acad., Sect. A 89 (1989), 101–114. Zbl 0661.47048, MR 90k:47120. (1989) Zbl0661.47048MR1021228
  19. Minty G., Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341–346. Zbl 0111.31202, MR 29 #6319. (1962) Zbl0111.31202MR0169064
  20. Nečas J., Sur l’alternative de Fredholm pour les opérateurs non linéaires avec applications aux problèmes aux limites, Ann. Scuola Norm. Sup. Pisa, Sci. Fis. Mat., III. Ser. 23 (1969), 331–345. Zbl 0187.08103, MR 42 #2332. (1969) Zbl0187.08103MR0267430
  21. Neuberger J. W., Existence of a spectrum for nonlinear transformations, Pacific J. Math. 31 (1969), 157–159. Zbl 0182.47203, MR 41 #4329. (1969) Zbl0182.47203MR0259696
  22. Pokhozhaev S. I., Solvability of nonlinear equations with odd operators, (Russian). Funkts. Anal. Prilozh. 1 (1967), 66–73. Zbl 0165.49502, MR 36 #4396. English transl. in Funct. Anal. Appl. 1 (1967), 227–233. Zbl 0165.49502. (1967) Zbl0165.49502MR0221344
  23. Rhodius A., Über numerische Wertebereiche und Spektralwertabschätzungen, Acta Sci. Math. 47 (1984), 465–470. Zbl 0575.47005, MR 86i:47005. (1984) Zbl0575.47005MR0783322
  24. Santucci P., Väth M., On the definition of eigenvalues for nonlinear operators, Nonlin. Anal., Theory Methods Appl. 40A (2000), 565–576. Zbl 0956.47038, MR 2001g:47118. Zbl0956.47038MR1768911
  25. Santucci P., Väth M., Grasping the phantom: a new approach to nonlinear spectral theory, Ann. Mat. Pura Appl. 180 (2001), 255–284. Zbl1150.47042MR1871616
  26. Väth M., The Furi-Martelli-Vignoli spectrum vs. the phantom, Nonlinear Anal., Theory Methods Appl. 47 (2001), 2237–2248. Zbl1042.47533MR1971633

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.