The commutators of analysis and interpolation
- Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 21-72
Access Full Article
topAbstract
topHow to cite
topCerdà, Joan. "The commutators of analysis and interpolation." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 2003. 21-72. <http://eudml.org/doc/221847>.
@inProceedings{Cerdà2003,
abstract = {The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator $[T,\Omega ]$ for linear operators $T$ and certain unbounded operators $\Omega $ that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result applies to some very concrete examples. In Section 1 some examples are given to present some instances where these commutators are used in Analysis. Section 2 is the basic one and contains a general “commutator theorem” for operators of interpolation methods, and the basic idea is that $\Omega $ appears as a combination of two admissible interpolation methods, $\Phi $ and $\Psi $, that correspond to $\Phi (F)=F(\vartheta )$ and $\Psi (f)=F^\{\prime \}(\vartheta )$ in the case of the complex method, with $\Omega (f)=\Psi (F)$ if $\Phi (F)=f$ (with a natural boundedness condition over the norms). Section 3 deals with the complex interpolation method and contains typical applications to commutators with pointwise multipliers. Section 4 refers to the real method, and an application to commutators with Fourier multipliers is included.},
author = {Cerdà, Joan},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Commutator; interpolation; complex method; real method; multiplier},
location = {Praha},
pages = {21-72},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {The commutators of analysis and interpolation},
url = {http://eudml.org/doc/221847},
year = {2003},
}
TY - CLSWK
AU - Cerdà, Joan
TI - The commutators of analysis and interpolation
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 2003
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 21
EP - 72
AB - The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator $[T,\Omega ]$ for linear operators $T$ and certain unbounded operators $\Omega $ that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result applies to some very concrete examples. In Section 1 some examples are given to present some instances where these commutators are used in Analysis. Section 2 is the basic one and contains a general “commutator theorem” for operators of interpolation methods, and the basic idea is that $\Omega $ appears as a combination of two admissible interpolation methods, $\Phi $ and $\Psi $, that correspond to $\Phi (F)=F(\vartheta )$ and $\Psi (f)=F^{\prime }(\vartheta )$ in the case of the complex method, with $\Omega (f)=\Psi (F)$ if $\Phi (F)=f$ (with a natural boundedness condition over the norms). Section 3 deals with the complex interpolation method and contains typical applications to commutators with pointwise multipliers. Section 4 refers to the real method, and an application to commutators with Fourier multipliers is included.
KW - Commutator; interpolation; complex method; real method; multiplier
UR - http://eudml.org/doc/221847
ER -
References
top- Bennett C., Sharpley B., Interpolation of operators, Pure and Applied Mathematics 129. Academic Press, Inc., New York, 1988. Zbl 0647.46057, MR 89e:46001. (1988) Zbl0647.46057MR0928802
- Bergh J., Löfström J., Interpolation spaces. An introduction, Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin, 1976. Zbl 0344.46071, MR 58 #2349. (1976) Zbl0344.46071MR0482275
- Brudnyǐ, Yu. A., Krugljak N. Ya., Interpolation functors and interpolation spaces, North-Holland Math. Library 47. North Holland, Amsterdam, 1991. Zbl 0743.46082, MR 93b:46141. (1991) MR1107298
- Calderón A. P., Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. Zbl 0204.13703, MR 29 #5097. (1964) Zbl0204.13703MR0167830
- Carro M. J., Cerdà J., Complex interpolation and spaces, Studia Math. 99 (1991), 57–67. Zbl 0772.46041, MR 92j:46134. (1991) MR1120739
- Carro M. J., Cerdà J., On the interpolation of analytic families of operators, In: Interpolation spaces and related topics (M. Cwikel, M. Milman and R. Rochberg, eds.). Israel Math. Conf. Proc. 5 (1992), 21–33. Zbl 0856.46046, MR 94b:46102. (1992) Zbl0856.46046MR1206488
- Carro M. J., Cerdà J., Milman M., Soria J., Schechter methods of interpolation and commutators, Math. Nachr. 174 (1995), 35–53. Zbl 0832.46064, MR 96k:46137. (1995) Zbl0832.46064MR1349035
- Carro M. J., Cerdà J., Soria J., Commutators and interpolation methods, Ark. Mat. 33 (1995), 199–216. Zbl 0903.46069, MR 97e:46101. (1995) Zbl0903.46069MR1373022
- Carro M. J., Cerdà J., Soria J., Higher order commutators in interpolation theory, Math. Scand. 77 (1996), 301–319. Zbl 0852.46058, MR 97d:46094. (1996) MR1379273
- Carro M. J., Cerdà J., Soria J., Commutators, interpolation and vector function spaces, In: Function spaces, interpolation spaces, and related topics. Proc. of the workshop, Haifa, Israel, June 7-13, 1995. Israel Math. Conf. Proc. 13, 24–31. Bar-Ilan Univ., Ramat Gan, 1999. Zbl 1007.46024, MR 2000e:46090. (1995) MR1707356
- Cerdà J., Martín J., Commutators and Besov spaces, Preprint.
- Cerdà J., Krugljak N. Ya., Martín J., Commutators for approximation spaces and Marcinkiewicz-type multipliers, J. Approx. Theory 100 (1999), 251–265. Zbl 0953.41023, MR 2000h:46086. (1999) Zbl0953.41023MR1714965
- Coifman R., Lions P.-L., Meyer Y., Semmes S., Compacité par compensation et éspaces de Hardy, C. R. Acad. Sci. Paris, Sér. I 309 (1989), 945–949. Zbl 0684.46044, MR 91h:46058. (1989) MR1054740
- Coifman R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. Zbl 0326.32011, MR 54 #843. (1976) Zbl0326.32011MR0412721
- Cwikel M., Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), 213–236. Zbl 0339.46024, MR 56 #1095. (1976) Zbl0339.46024MR0442714
- Cwikel M., Jawerth B., Milman M., The domain spaces of quasilogarithmic operators, Trans. Amer. Math. Soc. 317 (1989), 599–609. MR 90e:46075. (1989) MR0974512
- Cwikel M., Jawerth B., Milman M., Rochberg R., Differential estimates and commutators in interpolation theory, In: Analysis at Urbana. Vol. II: Analysis in abstract spaces. Proc. Special year in modern analysis. London Math. Soc. Lecture Note Ser. 138, 170–220. Cambridge Univ. Press, Cambridge, 1989. Zbl 0696.46050, MR 90k:46157. (1989) Zbl0696.46050MR1009191
- Cwikel M., Kalton N., Milman M., Rochberg R., A unified theory of commutator estimates for a class of interpolation methods, Adv. Math. 169 (2002), 241–312. Zbl pre01836808, MR 1 926 224. Zbl1022.46017MR1926224
- Carli L. De, Laeng E., Sharp estimates for the segment multiplier, Collect. Math. 51 (2000), 309–326. Zbl 0982.42006, MR 2001m:42027. MR1814332
- DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren der Mathematischen Wissenschaften 303. Springer-Verlag, Berlin, 1993. Zbl 0797.41016, MR 95f:41001. (1993) Zbl0797.41016MR1261635
- DeVore R. A., Riemenschneider S. D., Sharpley R., Weak interpolation in Banach spaces, J. Functional Anal. 33 (1979), 58–94. Zbl 0433.46062, MR 81f:46040. (1979) Zbl0433.46062MR0545385
- Edwards R. E., Gaudry G. I., Littlewood-Paley multipliers theory, Springer-Verlag, Berlin, 1977. Zbl 0464.42013, MR 58 #29760. (1977) MR0618663
- Cuerva J. García,- Francia J. L. Rubio de, Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116. North-Holland, Amsterdam, 1985. Zbl 0578.46046, MR 87d:42023. (1985) MR0807149
- Gustavsson J., A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289–305. Zbl 0389.46024, MR 80d:46124. (1978) Zbl0389.46024MR0512275
- Jawerth B., Rochberg R., Weiss G., Commutators and other second order estimates in real interpolation theory, Ark. Mat. 24 (1986), 191–219. Zbl 0655.41005, MR 88i:46096. (1986) MR0884187
- Kalton N. J., Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. 385 (1988). Zbl 0658.46059, MR 89h:47104. (1988) Zbl0658.46059MR0938889
- Kalton N. J., Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992), 479–529. Zbl 0776.46033,MR 92m:46111. (1992) Zbl0776.46033MR1081938
- Krein A., Petunin, Yu., Semenov E. M., Interpolation of linear operators, (Russian) Nauka, Moscow, 1978. Zbl 0493.46058, MR 81f:46086. English transl. in Translations of Mathematical Monographs 54. Amer. Math. Soc., Providence, R.I., 1982. Zbl 0499.46044, MR 84j:46103. (1978) MR0649411
- Lions J.-L., Quelques procédés d’interpolation d’opérateurs linéaires et quelques applications, Seminaire Schwartz II (1960–61), 2–3. (1960)
- Milman M., Schonbek T., Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc. 110 (1990), 961–969. Zbl 0717.46066, MR 91k:46088. (1990) Zbl0717.46066MR1075187
- Nilsson P., Reiteration theorems for real interpolation and approximation spaces, Ann. Math. Pura Appl. 132 (1982), 291–330. Zbl 0514.46049, MR 86c:46089. (1982) Zbl0514.46049MR0696048
- Peetre J., New thoughts on Besov spaces, Duke University Mathematics Series. Durham, N.C., 1976. Zbl 0356.46038, MR 57 #1108. (1976) Zbl0356.46038MR0461123
- Peetre J., Sparr G., Interpolation of normed Abelian groups, Ann. Mat. Pura Appl., IV. Ser. 92 (1972), 217–262. Zbl 0237.46039, MR 48 #891. (1972) Zbl0237.46039MR0322529
- Rochberg R., Weiss G., Derivatives of analytic families of Banach spaces, Ann. of Math. 118 (1983), 315–347. Zbl 0539.46049, MR 86a:46099. (1983) Zbl0539.46049MR0717826
- Francia J. L. Rubio de, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 2 (1985), 1–14. Zbl 0611.42005, MR 87j:42057. (1985) MR0850681
- Schechter M., Complex interpolation, Comp. Math. 18 (1967), 117–147. Zbl 0153.16402, MR 36 #6927. (1967) Zbl0153.16402MR0223880
- Segovia C., Torrea J. L., Vector valued commutators and applications, Indiana Univ. Math. J. 38 (1989), 959–971. Zbl 0696.47033, MR 90k:47067. (1989) Zbl0696.47033MR1029684
- Segovia C., Torrea J. L., Commutators of Littlewood-Paley sums, Ark. Mat. 31 (1993), 117–136. Zbl 0803.42006, MR 94j:42034. (1993) Zbl0803.42006MR1230269
- Stein E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970. Zbl 0207.13501, MR 44 #7280. (1970) Zbl0207.13501MR0290095
- Stein E. M., Harmonic analysis, Princeton Mathematical Series 43. Princeton University Press, Princeton, N.J., 1993. Zbl 0821.42001, MR 95c:42002. (1993) Zbl0821.42001MR1232192
- Triebel H., Interpolation theory, function spaces, differential operators, North-Holland Math. Library 18. North-Holland, Amsterdam, 1978. Zbl 0387.46032, MR 80i:46032b. (1978) Zbl0387.46033MR0503903
- Williams V., Generalized interpolation spaces, Trans. Amer. Math. Soc. 156 (1971), 309–334. Zbl 0213.13002, MR 43 #906. (1971) Zbl0213.13002MR0275149
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.