The commutators of analysis and interpolation

Cerdà, Joan

  • Nonlinear Analysis, Function Spaces and Applications, Publisher: Czech Academy of Sciences, Mathematical Institute(Praha), page 21-72

Abstract

top
The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator [ T , Ω ] for linear operators T and certain unbounded operators Ω that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result applies to some very concrete examples. In Section 1 some examples are given to present some instances where these commutators are used in Analysis. Section 2 is the basic one and contains a general “commutator theorem” for operators of interpolation methods, and the basic idea is that Ω appears as a combination of two admissible interpolation methods, Φ and Ψ , that correspond to Φ ( F ) = F ( ϑ ) and Ψ ( f ) = F ' ( ϑ ) in the case of the complex method, with Ω ( f ) = Ψ ( F ) if Φ ( F ) = f (with a natural boundedness condition over the norms). Section 3 deals with the complex interpolation method and contains typical applications to commutators with pointwise multipliers. Section 4 refers to the real method, and an application to commutators with Fourier multipliers is included.

How to cite

top

Cerdà, Joan. "The commutators of analysis and interpolation." Nonlinear Analysis, Function Spaces and Applications. Praha: Czech Academy of Sciences, Mathematical Institute, 2003. 21-72. <http://eudml.org/doc/221847>.

@inProceedings{Cerdà2003,
abstract = {The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator $[T,\Omega ]$ for linear operators $T$ and certain unbounded operators $\Omega $ that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result applies to some very concrete examples. In Section 1 some examples are given to present some instances where these commutators are used in Analysis. Section 2 is the basic one and contains a general “commutator theorem” for operators of interpolation methods, and the basic idea is that $\Omega $ appears as a combination of two admissible interpolation methods, $\Phi $ and $\Psi $, that correspond to $\Phi (F)=F(\vartheta )$ and $\Psi (f)=F^\{\prime \}(\vartheta )$ in the case of the complex method, with $\Omega (f)=\Psi (F)$ if $\Phi (F)=f$ (with a natural boundedness condition over the norms). Section 3 deals with the complex interpolation method and contains typical applications to commutators with pointwise multipliers. Section 4 refers to the real method, and an application to commutators with Fourier multipliers is included.},
author = {Cerdà, Joan},
booktitle = {Nonlinear Analysis, Function Spaces and Applications},
keywords = {Commutator; interpolation; complex method; real method; multiplier},
location = {Praha},
pages = {21-72},
publisher = {Czech Academy of Sciences, Mathematical Institute},
title = {The commutators of analysis and interpolation},
url = {http://eudml.org/doc/221847},
year = {2003},
}

TY - CLSWK
AU - Cerdà, Joan
TI - The commutators of analysis and interpolation
T2 - Nonlinear Analysis, Function Spaces and Applications
PY - 2003
CY - Praha
PB - Czech Academy of Sciences, Mathematical Institute
SP - 21
EP - 72
AB - The boundedness properties of commutators for operators are of central importance in Mathematical Analysis, and some of these commutators arise in a natural way from interpolation theory. Our aim is to present a general abstract method to prove the boundedness of the commutator $[T,\Omega ]$ for linear operators $T$ and certain unbounded operators $\Omega $ that appear in interpolation theory, previously known and a priori unrelated for both real and complex interpolation methods, and also to show how the abstract result applies to some very concrete examples. In Section 1 some examples are given to present some instances where these commutators are used in Analysis. Section 2 is the basic one and contains a general “commutator theorem” for operators of interpolation methods, and the basic idea is that $\Omega $ appears as a combination of two admissible interpolation methods, $\Phi $ and $\Psi $, that correspond to $\Phi (F)=F(\vartheta )$ and $\Psi (f)=F^{\prime }(\vartheta )$ in the case of the complex method, with $\Omega (f)=\Psi (F)$ if $\Phi (F)=f$ (with a natural boundedness condition over the norms). Section 3 deals with the complex interpolation method and contains typical applications to commutators with pointwise multipliers. Section 4 refers to the real method, and an application to commutators with Fourier multipliers is included.
KW - Commutator; interpolation; complex method; real method; multiplier
UR - http://eudml.org/doc/221847
ER -

References

top
  1. Bennett C., Sharpley B., Interpolation of operators, Pure and Applied Mathematics 129. Academic Press, Inc., New York, 1988. Zbl 0647.46057, MR 89e:46001. (1988) Zbl0647.46057MR0928802
  2. Bergh J., Löfström J., Interpolation spaces. An introduction, Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin, 1976. Zbl 0344.46071, MR 58 #2349. (1976) Zbl0344.46071MR0482275
  3. Brudnyǐ, Yu. A., Krugljak N. Ya., Interpolation functors and interpolation spaces, North-Holland Math. Library 47. North Holland, Amsterdam, 1991. Zbl 0743.46082, MR 93b:46141. (1991) MR1107298
  4. Calderón A. P., Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. Zbl 0204.13703, MR 29 #5097. (1964) Zbl0204.13703MR0167830
  5. Carro M. J., Cerdà J., Complex interpolation and L p spaces, Studia Math. 99 (1991), 57–67. Zbl 0772.46041, MR 92j:46134. (1991) MR1120739
  6. Carro M. J., Cerdà J., On the interpolation of analytic families of operators, In: Interpolation spaces and related topics (M. Cwikel, M. Milman and R. Rochberg, eds.). Israel Math. Conf. Proc. 5 (1992), 21–33. Zbl 0856.46046, MR 94b:46102. (1992) Zbl0856.46046MR1206488
  7. Carro M. J., Cerdà J., Milman M., Soria J., Schechter methods of interpolation and commutators, Math. Nachr. 174 (1995), 35–53. Zbl 0832.46064, MR 96k:46137. (1995) Zbl0832.46064MR1349035
  8. Carro M. J., Cerdà J., Soria J., Commutators and interpolation methods, Ark. Mat. 33 (1995), 199–216. Zbl 0903.46069, MR 97e:46101. (1995) Zbl0903.46069MR1373022
  9. Carro M. J., Cerdà J., Soria J., Higher order commutators in interpolation theory, Math. Scand. 77 (1996), 301–319. Zbl 0852.46058, MR 97d:46094. (1996) MR1379273
  10. Carro M. J., Cerdà J., Soria J., Commutators, interpolation and vector function spaces, In: Function spaces, interpolation spaces, and related topics. Proc. of the workshop, Haifa, Israel, June 7-13, 1995. Israel Math. Conf. Proc. 13, 24–31. Bar-Ilan Univ., Ramat Gan, 1999. Zbl 1007.46024, MR 2000e:46090. (1995) MR1707356
  11. Cerdà J., Martín J., Commutators and Besov spaces, Preprint. 
  12. Cerdà J., Krugljak N. Ya., Martín J., Commutators for approximation spaces and Marcinkiewicz-type multipliers, J. Approx. Theory 100 (1999), 251–265. Zbl 0953.41023, MR 2000h:46086. (1999) Zbl0953.41023MR1714965
  13. Coifman R., Lions P.-L., Meyer Y., Semmes S., Compacité par compensation et éspaces de Hardy, C. R. Acad. Sci. Paris, Sér. I 309 (1989), 945–949. Zbl 0684.46044, MR 91h:46058. (1989) MR1054740
  14. Coifman R., Rochberg R., Weiss G., Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. Zbl 0326.32011, MR 54 #843. (1976) Zbl0326.32011MR0412721
  15. Cwikel M., Monotonicity properties of interpolation spaces, Ark. Mat. 14 (1976), 213–236. Zbl 0339.46024, MR 56 #1095. (1976) Zbl0339.46024MR0442714
  16. Cwikel M., Jawerth B., Milman M., The domain spaces of quasilogarithmic operators, Trans. Amer. Math. Soc. 317 (1989), 599–609. MR 90e:46075. (1989) MR0974512
  17. Cwikel M., Jawerth B., Milman M., Rochberg R., Differential estimates and commutators in interpolation theory, In: Analysis at Urbana. Vol. II: Analysis in abstract spaces. Proc. Special year in modern analysis. London Math. Soc. Lecture Note Ser. 138, 170–220. Cambridge Univ. Press, Cambridge, 1989. Zbl 0696.46050, MR 90k:46157. (1989) Zbl0696.46050MR1009191
  18. Cwikel M., Kalton N., Milman M., Rochberg R., A unified theory of commutator estimates for a class of interpolation methods, Adv. Math. 169 (2002), 241–312. Zbl pre01836808, MR 1 926 224. Zbl1022.46017MR1926224
  19. Carli L. De, Laeng E., Sharp L p estimates for the segment multiplier, Collect. Math. 51 (2000), 309–326. Zbl 0982.42006, MR 2001m:42027. MR1814332
  20. DeVore R. A., Lorentz G. G., Constructive approximation, Grundlehren der Mathematischen Wissenschaften 303. Springer-Verlag, Berlin, 1993. Zbl 0797.41016, MR 95f:41001. (1993) Zbl0797.41016MR1261635
  21. DeVore R. A., Riemenschneider S. D., Sharpley R., Weak interpolation in Banach spaces, J. Functional Anal. 33 (1979), 58–94. Zbl 0433.46062, MR 81f:46040. (1979) Zbl0433.46062MR0545385
  22. Edwards R. E., Gaudry G. I., Littlewood-Paley multipliers theory, Springer-Verlag, Berlin, 1977. Zbl 0464.42013, MR 58 #29760. (1977) MR0618663
  23. Cuerva J. García,- Francia J. L. Rubio de, Weighted norm inequalities and related topics, North-Holland Mathematics Studies 116. North-Holland, Amsterdam, 1985. Zbl 0578.46046, MR 87d:42023. (1985) MR0807149
  24. Gustavsson J., A function parameter in connection with interpolation of Banach spaces, Math. Scand. 42 (1978), 289–305. Zbl 0389.46024, MR 80d:46124. (1978) Zbl0389.46024MR0512275
  25. Jawerth B., Rochberg R., Weiss G., Commutators and other second order estimates in real interpolation theory, Ark. Mat. 24 (1986), 191–219. Zbl 0655.41005, MR 88i:46096. (1986) MR0884187
  26. Kalton N. J., Nonlinear commutators in interpolation theory, Mem. Amer. Math. Soc. 385 (1988). Zbl 0658.46059, MR 89h:47104. (1988) Zbl0658.46059MR0938889
  27. Kalton N. J., Differentials of complex interpolation processes for Köthe function spaces, Trans. Amer. Math. Soc. 333 (1992), 479–529. Zbl 0776.46033,MR 92m:46111. (1992) Zbl0776.46033MR1081938
  28. Krein A., Petunin, Yu., Semenov E. M., Interpolation of linear operators, (Russian) Nauka, Moscow, 1978. Zbl 0493.46058, MR 81f:46086. English transl. in Translations of Mathematical Monographs 54. Amer. Math. Soc., Providence, R.I., 1982. Zbl 0499.46044, MR 84j:46103. (1978) MR0649411
  29. Lions J.-L., Quelques procédés d’interpolation d’opérateurs linéaires et quelques applications, Seminaire Schwartz II (1960–61), 2–3. (1960) 
  30. Milman M., Schonbek T., Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc. 110 (1990), 961–969. Zbl 0717.46066, MR 91k:46088. (1990) Zbl0717.46066MR1075187
  31. Nilsson P., Reiteration theorems for real interpolation and approximation spaces, Ann. Math. Pura Appl. 132 (1982), 291–330. Zbl 0514.46049, MR 86c:46089. (1982) Zbl0514.46049MR0696048
  32. Peetre J., New thoughts on Besov spaces, Duke University Mathematics Series. Durham, N.C., 1976. Zbl 0356.46038, MR 57 #1108. (1976) Zbl0356.46038MR0461123
  33. Peetre J., Sparr G., Interpolation of normed Abelian groups, Ann. Mat. Pura Appl., IV. Ser. 92 (1972), 217–262. Zbl 0237.46039, MR 48 #891. (1972) Zbl0237.46039MR0322529
  34. Rochberg R., Weiss G., Derivatives of analytic families of Banach spaces, Ann. of Math. 118 (1983), 315–347. Zbl 0539.46049, MR 86a:46099. (1983) Zbl0539.46049MR0717826
  35. Francia J. L. Rubio de, A Littlewood-Paley inequality for arbitrary intervals, Rev. Mat. Iberoamericana 2 (1985), 1–14. Zbl 0611.42005, MR 87j:42057. (1985) MR0850681
  36. Schechter M., Complex interpolation, Comp. Math. 18 (1967), 117–147. Zbl 0153.16402, MR 36 #6927. (1967) Zbl0153.16402MR0223880
  37. Segovia C., Torrea J. L., Vector valued commutators and applications, Indiana Univ. Math. J. 38 (1989), 959–971. Zbl 0696.47033, MR 90k:47067. (1989) Zbl0696.47033MR1029684
  38. Segovia C., Torrea J. L., Commutators of Littlewood-Paley sums, Ark. Mat. 31 (1993), 117–136. Zbl 0803.42006, MR 94j:42034. (1993) Zbl0803.42006MR1230269
  39. Stein E. M., Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970. Zbl 0207.13501, MR 44 #7280. (1970) Zbl0207.13501MR0290095
  40. Stein E. M., Harmonic analysis, Princeton Mathematical Series 43. Princeton University Press, Princeton, N.J., 1993. Zbl 0821.42001, MR 95c:42002. (1993) Zbl0821.42001MR1232192
  41. Triebel H., Interpolation theory, function spaces, differential operators, North-Holland Math. Library 18. North-Holland, Amsterdam, 1978. Zbl 0387.46032, MR 80i:46032b. (1978) Zbl0387.46033MR0503903
  42. Williams V., Generalized interpolation spaces, Trans. Amer. Math. Soc. 156 (1971), 309–334. Zbl 0213.13002, MR 43 #906. (1971) Zbl0213.13002MR0275149

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.