Analysis of a time optimal control problem related to the management of a bioreactor***
Lino J. Alvarez-Vázquez; Francisco J. Fernández; Aurea Martínez
ESAIM: Control, Optimisation and Calculus of Variations (2011)
- Volume: 17, Issue: 3, page 722-748
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topAlvarez-Vázquez, Lino J., Fernández, Francisco J., and Martínez, Aurea. "Analysis of a time optimal control problem related to the management of a bioreactor***." ESAIM: Control, Optimisation and Calculus of Variations 17.3 (2011): 722-748. <http://eudml.org/doc/221924>.
@article{Alvarez2011,
abstract = {
We consider a time optimal control problem arisen from the optimal
management of a bioreactor devoted to the treatment of
eutrophicated water. We formulate this realistic problem as a
state-control constrained time optimal control problem. After
analyzing the state system (a complex system of coupled partial
differential equations with non-smooth coefficients for
advection-diffusion-reaction with Michaelis-Menten kinetics,
modelling the eutrophication processes) we demonstrate the
existence of, at least, an optimal solution. Then we present a
detailed derivation of a first order optimality condition
(involving the corresponding adjoint systems) characterizing these
optimal solutions. Finally, a numerical example is shown.
},
author = {Alvarez-Vázquez, Lino J., Fernández, Francisco J., Martínez, Aurea},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {Time optimal control; partial differential equations;
optimality conditions; existence; bioreactor; time optimal control; optimality conditions},
language = {eng},
month = {8},
number = {3},
pages = {722-748},
publisher = {EDP Sciences},
title = {Analysis of a time optimal control problem related to the management of a bioreactor***},
url = {http://eudml.org/doc/221924},
volume = {17},
year = {2011},
}
TY - JOUR
AU - Alvarez-Vázquez, Lino J.
AU - Fernández, Francisco J.
AU - Martínez, Aurea
TI - Analysis of a time optimal control problem related to the management of a bioreactor***
JO - ESAIM: Control, Optimisation and Calculus of Variations
DA - 2011/8//
PB - EDP Sciences
VL - 17
IS - 3
SP - 722
EP - 748
AB -
We consider a time optimal control problem arisen from the optimal
management of a bioreactor devoted to the treatment of
eutrophicated water. We formulate this realistic problem as a
state-control constrained time optimal control problem. After
analyzing the state system (a complex system of coupled partial
differential equations with non-smooth coefficients for
advection-diffusion-reaction with Michaelis-Menten kinetics,
modelling the eutrophication processes) we demonstrate the
existence of, at least, an optimal solution. Then we present a
detailed derivation of a first order optimality condition
(involving the corresponding adjoint systems) characterizing these
optimal solutions. Finally, a numerical example is shown.
LA - eng
KW - Time optimal control; partial differential equations;
optimality conditions; existence; bioreactor; time optimal control; optimality conditions
UR - http://eudml.org/doc/221924
ER -
References
top- W. Allegretto, C. Mocenni and A. Vicino, Periodic solutions in modelling lagoon ecological interactions. J. Math. Biol.51 (2005) 367–388.
- L.J. Alvarez-Vázquez, F.J. Fernández and R. Muñoz-Sola, Analysis of a multistate control problem related to food technology. J. Differ. Equ.245 (2008) 130–153.
- L.J. Alvarez-Vázquez, F.J. Fernández and R. Muñoz-Sola, Mathematical analysis of a three-dimensional eutrophication model. J. Math. Anal. Appl.349 (2009) 135–155.
- N. Arada and J.-P. Raymond, Time optimal problems with Dirichlet boundary controls. Discrete Contin. Dyn. Syst.9 (2003) 1549–1570.
- O. Arino, K. Boushaba and A. Boussouar, A mathematical model of the dynamics of the phytoplankton-nutrient system. Nonlinear Anal. Real World Appl.1 (2000) 69–87.
- R.P. Canale, Modeling biochemical processes in aquatic ecosystems. Ann Arbor Science Publishers, Ann Arbor (1976).
- P. Cannarsa and H. Frankowska, Interior sphere property of attainable sets and time optimal control problems. ESAIM: COCV12 (2006) 350–370.
- E. Casas, Boundary control of semilinear elliptic equations with pointwise state constraints. SIAM J. Control Optim.31 (1993) 993–1006.
- F. Cioffi and F. Gallerano, Management strategies for the control of eutrophication processes in Fogliano lagoon (Italy): a long-term analysis using a mathematical model. Appl. Math. Model.25 (2001) 385–426.
- M. Drago, B. Cescon and L. Iovenitti, A three-dimensional numerical model for eutrophication and pollutant transport. Ecol. Model.145 (2001) 17–34.
- M. Gugat and G. Leugering, L∞-norm minimal control of the wave equation: on the weakness of the bang-bang principle. ESAIM: COCV14 (2008) 254–283.
- S. Li and G. Wang, The time optimal control of the Boussinesq equations. Numer. Funct. Anal. Optim.24 (2003) 163–180.
- F. Lunardini and G. Di Cola, Oxygen dynamics in coastal and lagoon ecosystems. Math. Comput. Model.31 (2000) 135–141.
- K. Park, H.-S. Jung, H.-S. Kim and S.-M. Ahn, Three-dimensional hydrodynamic-eutrophication model (HEM-3D): application to Kwang-Yang Bay, Korea. Mar. Environ. Res.60 (2005) 171–193.
- J.P. Raymond and H. Zidani, Pontryagin's principle for time-optimal problems. J. Optim. Theory Appl.101 (1999) 375–402.
- J.P. Raymond and H. Zidani, Time optimal problems with boundary controls. Differ. Integr. Equat.13 (2000) 1039–1072.
- T. Roubíček, Nonlinear partial differential equations with applications. Birkhäuser-Verlag, Basel (2005).
- G. Wang, The existence of time optimal control of semilinear parabolic equations. Syst. Control Lett.53 (2004) 171–175.
- L. Wang and G. Wang, The optimal time control of a phase-field system. SIAM J. Control Optim.42 (2003) 1483–1508.
- Y. Yamashiki, M. Matsumoto, T. Tezuka, S. Matsui and M. Kumagai, Three-dimensional eutrophication model for Lake Biwa and its application to the framework design of transferable discharge permits. Hydrol. Proc.17 (2003) 2957–2973.
- E. Zeidler, Nonlinear Functional Analysis and Its Applications – Part 3: Variational Methods and Optimization. Springer-Verlag, Berlin (1985).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.