A Finite Axiomatization of Nondeterministic Regular Expressions
Flavio Corradini; Rocco De Nicola; Anna Labella
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 33, Issue: 4-5, page 447-465
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topCorradini, Flavio, De Nicola, Rocco, and Labella, Anna. "A Finite Axiomatization of Nondeterministic Regular Expressions." RAIRO - Theoretical Informatics and Applications 33.4-5 (2010): 447-465. <http://eudml.org/doc/221958>.
@article{Corradini2010,
abstract = {
An alternative (tree-based) semantics for a class of regular expressions
is proposed that assigns a central rôle to the + operator and thus to
nondeterminism and nondeterministic choice. For the new semantics a
consistent and complete axiomatization is obtained from the original
axiomatization of regular expressions by Salomaa and by Kozen by dropping
the idempotence law for + and the distribution law of • over +.
},
author = {Corradini, Flavio, De Nicola, Rocco, Labella, Anna},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Semantics; regular expressions; axiomatizations; bisimulation.; regular languages},
language = {eng},
month = {3},
number = {4-5},
pages = {447-465},
publisher = {EDP Sciences},
title = {A Finite Axiomatization of Nondeterministic Regular Expressions},
url = {http://eudml.org/doc/221958},
volume = {33},
year = {2010},
}
TY - JOUR
AU - Corradini, Flavio
AU - De Nicola, Rocco
AU - Labella, Anna
TI - A Finite Axiomatization of Nondeterministic Regular Expressions
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 33
IS - 4-5
SP - 447
EP - 465
AB -
An alternative (tree-based) semantics for a class of regular expressions
is proposed that assigns a central rôle to the + operator and thus to
nondeterminism and nondeterministic choice. For the new semantics a
consistent and complete axiomatization is obtained from the original
axiomatization of regular expressions by Salomaa and by Kozen by dropping
the idempotence law for + and the distribution law of • over +.
LA - eng
KW - Semantics; regular expressions; axiomatizations; bisimulation.; regular languages
UR - http://eudml.org/doc/221958
ER -
References
top- L. Aceto and W. Fokkink, An Equational Axiomatization for multi-exit iteration. Inform. and Comput.134 (1997) 121-158.
- L. Aceto, W. Fokkink, R. van Glabbeek and A. Ingólfsdóttir, Axiomatizing prefix iteration with silent steps. Inform. and Comput.127 (1996) 26-40.
- L. Aceto, W. Fokkink and A. Ingólfsdóttir, A managerie of non-finitely based process semantics over BPA*: From ready simulation to completed traces. Research Report, BRICS, RS-96-23 (1996).
- J.C.M. Baeten and J.A. Bergstra, Process Algebra with a Zero Object, in Proc. ofConcur'90. Springer, Lecture Notes in Comput. Sci.458 (1990) 83-98.
- L. Bernatsky, S.L. Bloom, Z. Ésik and Gh. Stefanescu, Equational theories of relations and regular sets, in Proc. of Words, Languages and Combinatorics, Kyoto, 1992. Word Scientific, (1994) 40-48.
- S.L. Bloom and Z. Ésik, Iteration Algebras of Finite State Process Behaviours. Manuscript.
- S.L. Bloom, Z. Ésik and D. Taubner, Iteration theories of synchronization trees. Inform. and Comput.102 (1993) 1-55.
- M. Boffa, Une remarque sur les systèmes complets d'identités rationelles. Theoret. Informatics Appl.24 (1990) 419-423.
- J.H. Conway, Regular Algebra and Finite Machines. Chapman and Hall, London (1971).
- F. Corradini, R. De Nicola and A. Labella, Fully Abstract Models for Nondeterministic Regular Expressions, in Proc. ofConcur'95. Springer Verlag, Lecture Notes in Comput. Sci. 962 (1995) 130-144.
- F. Corradini, R. De Nicola and A. Labella, Models of Nondeterministic Regular Expressions. J. Comput. System Sci., to appear.
- R. De Nicola and A. Labella, Tree Morphisms and Bisimulations, in Proc. ofMFCS'98 Workshop on Concurrency. Elsevier, Amsterdam, Electron. Notes Theoret. Comput. Sci. 18 (1998).
- R. De Nicola and A. Labella, A Completeness Theorem for Nondeterministic Kleene Algebras, in Proc. ofMFCS'94. Springer, Lecture Notes in Comput. Sci. 841 (1994) 536-545.
- W. Fokkink, A complete equational axiomatization for prefix iteration. Inform. Process. Lett.52 (1994) 333-337.
- W. Fokkink, On the completeness of the Equations for the Kleene Star in Bisimulation, in Proc. ofAMAST'96. Springer, Lecture Notes in Comput. Sci. 1101 (1996) 180-194.
- W. Fokkink, Axiomatizations for the perpetual loop in Process Algebras, in Proc. ofICALP'97. Springer, Lecture Notes in Comput. Sci. 1256 (1997) 571-581.
- W. Fokkink and H. Zantema, Basic process algebra with iteration: Completeness of its equational axioms. Comput. J.37 (1994) 259-267.
- C.A.R. Hoare, Communicating Sequential Processes. Prentice Hall (1989).
- S.C. Kleene, Representation of Events in Nerve Nets and Finite Automata, in Automata Studies, Shannon and McCarthy, Ed. Princeton Univ. Pr. (1956) 3-41.
- S. Kasangian and A. Labella, Enriched Categorical Semantics for Distributed Calculi. J. Pure Appl. Algebra83 (1992) 295-321.
- D. Kozen, A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events. Inform. and Comput.110 (1994) 366-390.
- D. Krob, Complete systems of B-rational identities. Theoret. Comput. Sci.89 (1991) 207-343.
- W. Kuich and A. Salomaa, Semirings, Automata, Languages. Springer, Berlin, Monogr. Theoret. Comput. Sci. EATCS Ser.5 (1986).
- R. Milner, A Calculus of Communicating Systems. Springer-Verlag, Berlin, Lecture Notes in Comput. Sci.94 (1980).
- R. Milner, A complete inference system for a class of regular behaviors. J. Comput. System Sci. 28 (1984) 439-466.
- R. Milner, Communication and Concurrency. Prentice Hall (1989).
- R.N. Moll, M.A. Arbib and A.J. Kfoury, An Introduction to Formal Language Theory. Springer-Verlag, Berlin (1987).
- D. Park, Concurrency and Automata on Infinite sequences, in Proc. GI. Springer, Lecture Notes in Comput. Sci. 104 (1981) 167-183.
- B.C. Pierce, Basic Category Theory for Computer Scientists. The MIT Press (1991).
- V.N. Redko, On defining relations for the algebra of regular events (Russian). Ukrain. Mat. Z.16 (1964) 120-126.
- J. Sakarovitch, Kleene's theorem revisited, in Proc. ofTrends, techniques, and problems in theoretical computer science. Springer, Lecture Notes in Comput. Sci. 281 (1986) 39-50.
- A. Salomaa, Two Complete Axiom Systems for the Algebra of Regular Events. J. ACM13 (1966) 158-169.
- P. Sewell, Bisimulation is not finitely (first order) equationally axiomatisable, in Proc. ofLICS'94 (1994).
- M.B. Smith and G.D. Plotkin, The category-Theoretic Solution of Recursive Domain Equation. SIAM J. Comput.11 (1982) 762-783.
- D.R. Troeger, Step bisimulation is pomset equivalence on a parallel language without explicit internal choice. Math. Structures Comput. Sci.3 (1993) 25-62.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.