On the product of balanced sequences
Antonio Restivo; Giovanna Rosone
RAIRO - Theoretical Informatics and Applications (2012)
- Volume: 46, Issue: 1, page 131-145
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- E. Altman, B. Gaujal and A. Hordijk, Balanced sequences and optimal routing. J. ACM47 (2000) 752–775.
- N. Chekhova, P. Hubert and A. Messaoudi, Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci. J. Théor. Nombres Bordeaux13 (2001) 371–394.
- C. Choffrut and J. Karhumaki, Combinatorics of words, in G. Rozenberg and A. Salomaa eds., Handbook of Formal Language Theory1. Springer-Verlag, Berlin (1997).
- S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory67 (1997) 146–161.
- A.S. Fraenkel, Complementing and exactly covering sequences. J. Combin. Theory Ser. A14 (1973) 8–20.
- P. Hubert, Suites équilibrées (french). Theor. Comput. Sci.242 (2000) 91–108.
- M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002).
- M. Morse and G.A. Hedlund, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math.62 (1940) 1–42.
- R.N. Risley and L.Q. Zamboni, A generalization of sturmian sequences : combinatorial structure and transcendence. Acta Arith.95 (2000) 167–184.
- P.V. Salimov, On uniform recurrence of a direct product. Discrete Math. Theoret. Comput. Sci.12 (2010) 1–8.
- L. Vuillon, Balanced words. Bull. Belg. Math. Soc.10 (2003) 787–805.