Rational base number systems for p-adic numbers
Christiane Frougny; Karel Klouda
RAIRO - Theoretical Informatics and Applications (2012)
- Volume: 46, Issue: 1, page 87-106
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- S. Akiyama, Ch. Frougny and J. Sakarovitch, Powers of rationals modulo 1 and rational base number systems. Isr. J. Math.168 (2008) 53–91.
- I. Kátai and J. Szabó, Canonical number systems for complex integers. Acta Sci. Math. (Szeged)37 (1975) 255–260.
- M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications95. Cambridge University Press (2002).
- K. Mahler, An unsolved problem on the powers of 3/2. J. Austral. Math. Soc.8 (1968) 313–321.
- M.R. Murty, Introduction to p-adic analytic number theory. American Mathematical Society (2002).
- A. Odlyzko and H. Wilf, Functional iteration and the Josephus problem. Glasg. Math. J.33 (1991) 235–240.
- A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar.8 (1957) 477–493.
- W.J. Robinson, The Josephus problem. Math. Gaz.44 (1960) 47–52.
- J. Sakarovitch, Elements of Automata Theory. Cambridge University Press, New York (2009).