Recursive algorithm for parity games requires exponential time
RAIRO - Theoretical Informatics and Applications (2012)
- Volume: 45, Issue: 4, page 449-457
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- E.A. Emerson and C.S. Jutla, Tree automata, μ-calculus and determinacy, in Proc. 32nd Symp. on Foundations of Computer Science. San Juan, Puerto Rico, IEEE (1991) 368–377.
- E.A. Emerson, C.S. Jutla and A.P. Sistla, On model-checking for fragments of μ-calculus, in Proc. 5th Conf. on Computer Aided Verification, CAV’93. Lect. Notes Comput. Sci.697 (1993) 385–396.
- O. Friedmann, An exponential lower bound for the parity game strategy improvement algorithm as we know it, in Proc. of LICS (2009) 145–156.
- O. Friedmann and M. Lange, Solving parity games in practice, in Proc. of ATVA (2009) 182–196.
- E. Grädel, W. Thomas and Th. Wilke Eds., Automata, Logics, and Infinite Games. Lect. Notes Comput. Sci.2500 (2002).
- M. Jurdzinski, Deciding the winner in parity games is in up ∩ co − up. Inf. Process. Lett.68 (1998) 119–124.
- M. Jurdziński, Small progress measures for solving parity games, in Proc. 17th Ann. Symp. on Theoretical Aspects of Computer Science, STACS’00, edited by H. Reichel and S. Tison. Lect. Notes Comput. Sci.1770 (2000) 290–301.
- M. Jurdziński, M. Paterson and U. Zwick, A deterministic subexponential algorithm for solving parity games, in Proc. 17th Ann. ACM-SIAM Symp. on Discrete Algorithm, SODA’06. ACM (2006) 117–123.
- S. Schewe, Solving parity games in big steps, in Proc. FST TCS. Springer-Verlag (2007).
- S. Schewe, An optimal strategy improvement algorithm for solving parity and payoff games, in 17th Annual Conference on Computer Science Logic (CSL) (2008).
- P. Stevens and C. Stirling, Practical model-checking using games, in Proc. 4th Int. Conf. on Tools and Algorithms for the Construction and Analysis of Systems, TACAS’98, edited by B. Steffen. Lect. Notes Comput. Sci.1384 (1998) 85–101.
- C. Stirling, Local model checking games, in Proc. 6th Conf. on Concurrency Theory, CONCUR’95. Lect. Notes Comput. Sci.962 (1995) 1–11.
- J. Vöge and M. Jurdziński, A discrete strategy improvement algorithm for solving parity games, in Proc. 12th Int. Conf. on Computer Aided Verification, CAV’00. Lect. Notes Comput. Sci.1855 (2000) 202–215.
- W. Zielonka, Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoret. Comput. Sci.200 (1998) 135–183.