Periodicity and roots of transfinite strings

Olivier Carton; Christian Choffrut

RAIRO - Theoretical Informatics and Applications (2010)

  • Volume: 35, Issue: 6, page 525-533
  • ISSN: 0988-3754

Abstract

top
This contribution extends the notions of roots and periodicity to strings of transfinite lengths. It shows that given a transfinite string, either it possesses a unique root or the set of its roots are equivalent in a strong way.

How to cite

top

Carton, Olivier, and Choffrut, Christian. "Periodicity and roots of transfinite strings." RAIRO - Theoretical Informatics and Applications 35.6 (2010): 525-533. <http://eudml.org/doc/222003>.

@article{Carton2010,
abstract = { This contribution extends the notions of roots and periodicity to strings of transfinite lengths. It shows that given a transfinite string, either it possesses a unique root or the set of its roots are equivalent in a strong way. },
author = {Carton, Olivier, Choffrut, Christian},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Ordinals; combinatorics on words.; roots; strings of transfinite lengths},
language = {eng},
month = {3},
number = {6},
pages = {525-533},
publisher = {EDP Sciences},
title = {Periodicity and roots of transfinite strings},
url = {http://eudml.org/doc/222003},
volume = {35},
year = {2010},
}

TY - JOUR
AU - Carton, Olivier
AU - Choffrut, Christian
TI - Periodicity and roots of transfinite strings
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 6
SP - 525
EP - 533
AB - This contribution extends the notions of roots and periodicity to strings of transfinite lengths. It shows that given a transfinite string, either it possesses a unique root or the set of its roots are equivalent in a strong way.
LA - eng
KW - Ordinals; combinatorics on words.; roots; strings of transfinite lengths
UR - http://eudml.org/doc/222003
ER -

References

top
  1. A. Carpi and A. de Luca, Periodic-like words, periodicity and boxes. Acta Informatica37 (2001) 597-618.  
  2. Y. Césari and M. Vincent, Une caractérisation des mots périodiques. C. R. Acad. Sci. Paris A (1978) 1175-1177.  
  3. C. Choffrut and S. Horváth, Transfinite equations in transfinite strings, 625-649.  
  4. J.P. Duval, Périodes et répétitions des mots du monoïde libre. Theoret. Comput. Sci.9 (1979) 17-26.  
  5. J.P. Duval, Mots de Lyndon et périodicité. RAIRO: Theoret. Informatics Appl.14 (1980) 181-191.  
  6. N.J. Fine and H.S. Wilf, Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc.3 (1965) 109-114.  
  7. D. Giammarresi, S. Mantaci, F. Mignosi and A. Restivo, A periodicity theorem fro trees. Theoret. Comput. Sci.1-2 (1998) 145-181.  
  8. D. Klaua, Allgemeine Mengenlehre. Akademie Verlag (1969).  
  9. J.G. Rosenstein, Linear ordering. Academic Press, New York (1982).  
  10. W. Sierpinski, Cardinal and Ordinal Numbers. Warsaw: PWN (1958).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.