# On abelian versions of critical factorization theorem∗

Sergey Avgustinovich; Juhani Karhumäki; Svetlana Puzynina

RAIRO - Theoretical Informatics and Applications (2012)

- Volume: 46, Issue: 1, page 3-15
- ISSN: 0988-3754

## Access Full Article

top## Abstract

top## How to cite

topAvgustinovich, Sergey, Karhumäki, Juhani, and Puzynina, Svetlana. "On abelian versions of critical factorization theorem∗." RAIRO - Theoretical Informatics and Applications 46.1 (2012): 3-15. <http://eudml.org/doc/222029>.

@article{Avgustinovich2012,

abstract = {In the paper we study abelian versions of the critical factorization theorem. We investigate both similarities and differences between the abelian powers and the usual powers. The results we obtained show that the constraints for abelian powers implying periodicity should be quite strong, but still natural analogies exist. },

author = {Avgustinovich, Sergey, Karhumäki, Juhani, Puzynina, Svetlana},

journal = {RAIRO - Theoretical Informatics and Applications},

keywords = {Combinatorics on words; periodicity; central factorization theorem; abelian properties of words.; combinatorics on words; abelian properties of words},

language = {eng},

month = {3},

number = {1},

pages = {3-15},

publisher = {EDP Sciences},

title = {On abelian versions of critical factorization theorem∗},

url = {http://eudml.org/doc/222029},

volume = {46},

year = {2012},

}

TY - JOUR

AU - Avgustinovich, Sergey

AU - Karhumäki, Juhani

AU - Puzynina, Svetlana

TI - On abelian versions of critical factorization theorem∗

JO - RAIRO - Theoretical Informatics and Applications

DA - 2012/3//

PB - EDP Sciences

VL - 46

IS - 1

SP - 3

EP - 15

AB - In the paper we study abelian versions of the critical factorization theorem. We investigate both similarities and differences between the abelian powers and the usual powers. The results we obtained show that the constraints for abelian powers implying periodicity should be quite strong, but still natural analogies exist.

LA - eng

KW - Combinatorics on words; periodicity; central factorization theorem; abelian properties of words.; combinatorics on words; abelian properties of words

UR - http://eudml.org/doc/222029

ER -

## References

top- S.V. Avgustinovich and A.E. Frid, Words avoiding abelian inclusions. J. Autom. Lang. Comb.7 (2002) 3–9.
- Y. Césari and M. Vincent, Une caractérisation des mots périodiques. C.R. Acad. Sci. Paris, Ser. A286 (1978) 1175–1177.
- J. Cassaigne and J. Karhumäki, Toeplitz words, generalized periodicity and periodically iterated morphisms. Eur. J. Comb.18 (1997) 497–510.
- J. Cassaigne, G. Richomme, K. Saari and L.Q. Zamboni, Avoiding Abelian powers in binary words with bounded Abelian complexity. Int. J. Found. Comput. Sci.22 (2011) 905–920.
- J.-P. Duval, Périodes et répetitions des mots du monoide libre. Theoret. Comput. Sci.9 (1979) 17–26.
- J. Karhumäki, A. Lepistö and W. Plandowski, Locally periodic versus globally periodic infinite words. J. Comb. Th. (A)100 (2002) 250–264.
- A. Lepistö, On Relations between Local and Global Periodicity. Ph.D. thesis (2002).
- M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (2002).
- F. Mignosi, A. Restivo and S. Salemi, Periodicity and the golden ratio. Theoret. Comput. Sci.204 (1998) 153–167.
- G. Richomme, K. Saari and L. Zamboni, Abelian complexity of minimal subshifts. J. London Math. Soc.83 (2011) 79–95.
- K. Saari, Everywhere α-repetitive sequences and Sturmian words. Eur. J. Comb.31 (2010) 177–192.
- O. Toeplitz, Beispiele zur theorie der fastperiodischen Funktionen. Math. Ann.98 (1928) 281–295.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.