Multi-dimensional sets recognizable in all abstract numeration systems
Émilie Charlier; Anne Lacroix; Narad Rampersad
RAIRO - Theoretical Informatics and Applications (2012)
- Volume: 46, Issue: 1, page 51-65
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topReferences
top- P.-Y. Angrand and J. Sakarovitch, Radix enumeration of rational languages. RAIRO–Theor. Inf. Appl.44 (2010) 19–36.
- V. Berthé, C. Frougny, M. Rigo and J. Sakarovitch, On the cost and complexity of the successor function, in Proceedings of WORDS 2007. P. Arnoux, N. Bédaride and J. Cassaigne Eds., CIRM, Luminy, Marseille (2007).
- V. Bruyère, G. Hansel, C. Michaux and R. Villemaire, Logic and p-recognizable sets of integers. Bull. Belg. Math. Soc.1 (1994) 191–238.
- É. Charlier, T. Kärki and M. Rigo, Multidimensional generalized automatic sequences and shape-symmetric morphic words. Discrete Math.310 (2010) 1238–1252.
- A. Cobham, On the base-dependence of set of numbers recognizable by finite automata. Math. Syst. Theory3 (1969) 186–192.
- S. Eilenberg, Automata, languages, and machinesA, Pure and Applied Mathematics58. Academic Press, New York (1974).
- S. Eilenberg, C.C. Elgot and J.C. Shepherdson, Sets recognised by n-tape automata. J. Algebra13 (1969) 447–464.
- Ch. Frougny and J. Sakarovitch, Synchronized rational relations of finite and infinite words. Theoret. Comput. Sci.108 (1993) 45–82.
- Ch. Frougny and J. Sakarovitch, Number representation and finite automata, in Combinatorics, Automata, and Number Theory, Encyclopedia of Mathematics and its Applications135. V. Berthé and M. Rigo Eds., Cambridge (2010).
- S. Ginsburg and E.H. Spanier, Semigroups, Presburger formulas and languages. Pac. J. Math.16 (1966) 285–296.
- P. Lecomte and M. Rigo, Numeration systems on a regular language. Theor. Comput. Syst.34 (2001) 27–44.
- P. Lecomte and M. Rigo, Abstract numeration systems, in Combinatorics, Automata, and Number Theory, Encyclopedia of Mathematics and its Applications135. V. Berthé and M. Rigo Eds., Cambridge (2010).
- J. Ramírez Alfonsín, The Diophantine Frobenius problem, Oxford Lecture Series in Mathematics and its Applications30. Oxford (2005).
- M. Rigo and A. Maes, More on generalized automatic sequences. J. Autom. Lang. Comb.7 (2002) 351–376.
- S. Rubin, Automatic Structures. Ph.D. thesis, University of Auckland, New Zealand (2004).
- A.L. Semenov, The Presburger nature of predicates that are regular in two number systems. Sibirsk. Math. Ž.18 (1977) 403–418, 479 (in Russian). English translation in Sib. J. Math.18 (1977) 289–300.