Complexité et automates cellulaires linéaires
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 34, Issue: 5, page 403-423
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topBerthé, Valérie. "Complexité et automates cellulaires linéaires." RAIRO - Theoretical Informatics and Applications 34.5 (2010): 403-423. <http://eudml.org/doc/222081>.
@article{Berthé2010,
abstract = {
The aim of this paper is to evaluate the growth order
of the complexity function (in rectangles)
for two-dimensional sequences
generated by a linear cellular automaton
with coefficients in $\mathbb\{Z\}/l \mathbb\{Z\}$, and polynomial initial condition.
We prove that the complexity function
is quadratic when l is a prime and that it increases with respect
to the number of distinct prime factors of l.
},
author = {Berthé, Valérie},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {linear cellular automaton},
language = {fre},
month = {3},
number = {5},
pages = {403-423},
publisher = {EDP Sciences},
title = {Complexité et automates cellulaires linéaires},
url = {http://eudml.org/doc/222081},
volume = {34},
year = {2010},
}
TY - JOUR
AU - Berthé, Valérie
TI - Complexité et automates cellulaires linéaires
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 34
IS - 5
SP - 403
EP - 423
AB -
The aim of this paper is to evaluate the growth order
of the complexity function (in rectangles)
for two-dimensional sequences
generated by a linear cellular automaton
with coefficients in $\mathbb{Z}/l \mathbb{Z}$, and polynomial initial condition.
We prove that the complexity function
is quadratic when l is a prime and that it increases with respect
to the number of distinct prime factors of l.
LA - fre
KW - linear cellular automaton
UR - http://eudml.org/doc/222081
ER -
References
top- J.-P. Allouche, Automates finis en théorie des nombres. Exposition. Math.5 (1987) 239-266.
- J.-P. Allouche, Sur la complexité des suites infinies. Bull. Belg. Math. Soc.1 (1994) 133-143.
- J.-P. Allouche et V. Berthé, Triangle de Pascal, complexité et automates. Bull. Belg. Math. Soc.4 (1997) 1-23.
- J.-P. Allouche et J. Shallit, The ring of k-regular sequences. Theoret. Comput. Sci.98 (1992) 163-197.
- J.-P. Allouche et D. Berend, Complexity of the sequence of middle-binomial coefficients (en préparation).
- J.-P. Allouche, E. Cateland, H.-O. Peitgen, J. Shallit et G. Skordev, Automatic maps on a semiring with digits. Fractals3 (1995) 663-677.
- J.-P. Allouche, F. von Haeseler, H.-O. Peitgen et G. Skordev, Linear cellular automata, finite automata and Pascal's triangle. Discrete Appl. Math.66 (1996) 1-22.
- J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, A. Petersen et G. Skordev, Linear cellular automata and automatic sequences. Parallel Comput.23 (1997) 1577-1592.
- J.-P. Allouche, F. von Haeseler, H.-O. Peitgen, A. Petersen et G. Skordev, Automaticity of double sequences generated by one-dimensional linear cellular automata. Theoret. Comput. Sci.88 (1997) 195-209.
- F. Blanchard, P. Kurka et A. Maass, Topological and measure-theoretic properties of one-dimensional cellular automata. Phys. D103 (1997) 86-99.
- J. Cassaigne, Special factors of sequences with linear subword complexity, in Developments in Language Theory II (DLT'95), Magdeburg (Allemagne). World Scientific (1996) 25-34.
- A. Cobham, Uniform tag sequences. Math. Systems Theory6 (1972) 164-192.
- C. Grillenberger, Construction of striclty ergodic systems I. Given entropy. Z. Wahrsch. Verw. Gebiete25 (1973) 323-334.
- B. Litow et P. Dumas, Additive cellular automata and algebraic series. Theoret. Comput. Sci.119 (1993) 345-354.
- G. Manzini, Characterization of sensitive linear cellular automata with respect to the counting distance, in MFCS'98. Springer, Lecture Notes in Comput. Sci.1450 (1998) 825-833.
- G. Manzini et L. Margara, Attractors of D-dimensional linear cellular automata, in STACS 98. Springer, Lecture Notes in Comput. Sci.1373 (1998) 128-138.
- G. Manzini et L. Margara, Invertible cellular automata over : Algorithmic and dynamical aspects. J. Comput. System Sci.56 (1998) 60-67.
- G. Manzini et L. Margara, A complete and efficiently computable topological classification of D-dimensional linear cellular automata over . Theoret. Comput. Sci.221 (1999) 157-177.
- O. Martin, A. Odlyzko et S. Wolfram, Algebraic properties of cellular automata. Comm. Math. Phys.93 (1984) 219-258.
- J.-J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes itérés. Springer, Lecture Notes in Comput. Sci.172 (1984) 380-389.
- A.D. Robinson, Fast computation of additive cellular automata. Complex Systems1 (1987) 211-216.
- O. Salon, Suites automatiques à multi-indices et algébricité. C. R. Acad. Sci. Paris Sér. I Math.305 (1987) 501-504.
- O. Salon, Suites automatiques à multi-indices, Séminaire de Théorie des Nombres de Bordeaux, Exposé 4 (1986-1987) 4-01-4-27 ; suivi par un Appendice de J. Shallit, 4-29A-4-36A.
- J.W. Sander, R. Tijdeman, The complexity of functions on lattices. Theoret. Comput. Sci. (à paraître).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.