A test-set for k-power-free binary morphisms
RAIRO - Theoretical Informatics and Applications (2010)
- Volume: 35, Issue: 5, page 437-452
- ISSN: 0988-3754
Access Full Article
topAbstract
topHow to cite
topWlazinski, F.. "A test-set for k-power-free binary morphisms." RAIRO - Theoretical Informatics and Applications 35.5 (2010): 437-452. <http://eudml.org/doc/222091>.
@article{Wlazinski2010,
abstract = {
A morphism f is k-power-free if and only if f(w) is k-power-free whenever w is a k-power-free word.
A morphism f is k-power-free up to m if and only
if f(w) is
k-power-free whenever w is a k-power-free word of
length at most m.
Given an integer k ≥ 2,
we prove that a binary morphism
is k-power-free
if and only if it is k-power-free up to k2.
This bound becomes linear for primitive morphisms:
a binary primitive morphism is k-power-free
if and only if it is k-power-free up to 2k+1},
author = {Wlazinski, F.},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {Combinatorics on words; k-power-free words; morphisms; test-sets; binary morphism},
language = {eng},
month = {3},
number = {5},
pages = {437-452},
publisher = {EDP Sciences},
title = {A test-set for k-power-free binary morphisms},
url = {http://eudml.org/doc/222091},
volume = {35},
year = {2010},
}
TY - JOUR
AU - Wlazinski, F.
TI - A test-set for k-power-free binary morphisms
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 35
IS - 5
SP - 437
EP - 452
AB -
A morphism f is k-power-free if and only if f(w) is k-power-free whenever w is a k-power-free word.
A morphism f is k-power-free up to m if and only
if f(w) is
k-power-free whenever w is a k-power-free word of
length at most m.
Given an integer k ≥ 2,
we prove that a binary morphism
is k-power-free
if and only if it is k-power-free up to k2.
This bound becomes linear for primitive morphisms:
a binary primitive morphism is k-power-free
if and only if it is k-power-free up to 2k+1
LA - eng
KW - Combinatorics on words; k-power-free words; morphisms; test-sets; binary morphism
UR - http://eudml.org/doc/222091
ER -
References
top- J. Berstel, Axel thue's work on repetitions in words, edited by P. Leroux and C. Reutenauer, Séries formelles et combinatoire algébrique. LaCIM, University of Québec at Montréal (1992) 65-80.
- J. Berstel, Axel thue's papers on repetitions in words: A translation, Technical Report 20. LaCIM, University of Québec at Montréal (1995).
- J. Berstel and P. Séébold, A characterization of overlap-free morphisms. Discrete Appl. Math.46 (1993) 275-281.
- M. Crochemore, Sharp characterizations of squarefree morphisms. Theoret. Comput. Sci.18 (1982) 221-226.
- J. Karhumäki, On cube free ω-words generated by binary morphisms. Discrete Appl. Math.5 (1983) 279-297.
- V. Keränen, On the k-repetition freeness of length uniform morphisms over a binary alphabet. Discrete Appl. Math.9 (1984) 297-300.
- V. Keränen, On the k-freeness of morphisms on free monoids. Ann. Acad. Sci. Fenn. 61 (1986).
- M. Leconte, A characterization of power-free morphisms. Theoret. Comput. Sci.38 (1985) 117-122.
- M. Leconte, Codes sans répétition, Ph.D. Thesis. LITP Université P. et M. Curie (1985).
- A. Lentin and M.P. Schützenberger, A combinatorial problem in the theory of free monoids, edited by R.C. Bose and T.E. Dowling. Chapell Hill, North Carolina Press edition, Comb. Math. (1945) 112-144.
- M. Lothaire, Combinatorics on words, Vol. 17 of Encyclopedia of Mathematics, Chap. 9, Equations on words. Addison-Wesley (1983). Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical Library.
- M. Lothaire, Algebraic combinatorics on words. Cambridge University Press (to appear).
- V. Mitrana, Primitive morphisms. Inform. Process. Lett.64 (1997) 277-281.
- M. Morse, Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc.22 (1921) 84-100.
- G. Richomme and P. Séébold, Characterization of test-sets for overlap-free morphisms. Discrete Appl. Math.98 (1999) 151-157.
- G. Richomme and F. Wlazinski, About cube-free morphisms, edited by H. Reichel and S. Tison, STACS 2000. Springer-Verlag, Lecture Notes in Comput. Sci. 1770 (2000) 99-109.
- G. Richomme and F. Wlazinski, Some results on k-power-free morphisms. Theoret. Comput. Sci.273 (2002) 119-142.
- P. Séébold, Sequences generated by infinitely iterated morphisms. Discrete Appl. Math.11 (1985) 255-264.
- A. Thue, Uber unendliche Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1906) 1-22.
- A. Thue, Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1912) 1-67.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.