Calculs d'invariants primitifs de groupes finis

Ines Abdeljaouad

RAIRO - Theoretical Informatics and Applications (2010)

  • Volume: 33, Issue: 1, page 59-77
  • ISSN: 0988-3754

Abstract

top
We introduce in this article a new method to calculate all absolute and relatif primitive invariants of finite groups. This method is inspired from K. Girstmair which calculate an absolute primitive invariant of minimal degree. Are presented two algorithms, the first one enable us to calculate all primitive invariants of minimal degree, and the second one calculate all absolute or relative primitive invariants with distincts coefficients. This work take place in Galois Theory and Invariant Theory.

How to cite

top

Abdeljaouad, Ines. "Calculs d'invariants primitifs de groupes finis." RAIRO - Theoretical Informatics and Applications 33.1 (2010): 59-77. <http://eudml.org/doc/222095>.

@article{Abdeljaouad2010,
abstract = { We introduce in this article a new method to calculate all absolute and relatif primitive invariants of finite groups. This method is inspired from K. Girstmair which calculate an absolute primitive invariant of minimal degree. Are presented two algorithms, the first one enable us to calculate all primitive invariants of minimal degree, and the second one calculate all absolute or relative primitive invariants with distincts coefficients. This work take place in Galois Theory and Invariant Theory. },
author = {Abdeljaouad, Ines},
journal = {RAIRO - Theoretical Informatics and Applications},
keywords = {permutation groups; invariant polynomial ring; algorithm},
language = {eng},
month = {3},
number = {1},
pages = {59-77},
publisher = {EDP Sciences},
title = {Calculs d'invariants primitifs de groupes finis},
url = {http://eudml.org/doc/222095},
volume = {33},
year = {2010},
}

TY - JOUR
AU - Abdeljaouad, Ines
TI - Calculs d'invariants primitifs de groupes finis
JO - RAIRO - Theoretical Informatics and Applications
DA - 2010/3//
PB - EDP Sciences
VL - 33
IS - 1
SP - 59
EP - 77
AB - We introduce in this article a new method to calculate all absolute and relatif primitive invariants of finite groups. This method is inspired from K. Girstmair which calculate an absolute primitive invariant of minimal degree. Are presented two algorithms, the first one enable us to calculate all primitive invariants of minimal degree, and the second one calculate all absolute or relative primitive invariants with distincts coefficients. This work take place in Galois Theory and Invariant Theory.
LA - eng
KW - permutation groups; invariant polynomial ring; algorithm
UR - http://eudml.org/doc/222095
ER -

References

top
  1. I. Abdeljaouad, Calculs d'invariants primitifs minimaux et implantation en Axiom, Mémoire de stage, DEA Algorithmique (1996). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://medicis.polytechnique.fr/medicis/projetGalois  
  2. I. Abdeljaouad, Package PrimitiveInvariant sous GAP, (1997). Disponible sur la page web du Projet Galois du GDR MEDICIS : http://medicis.polytechnique.fr/medicis/projetGalois  
  3. J.M. Arnaudiès and A. Valibouze, Lagrange resolvents. J. Pure Appl. Algebra (1997).  
  4. E.H. Berwick, The condition that a quintic equation should be soluble by radicals. Proc. London Math. Soc.14 (1915) 301-307.  
  5. E.H. Berwick, On soluble sextic equations. Proc. London Math. Soc.29 (1929) 1-28.  
  6. A. Cayley, On a new auxiliary equation in the theory of equation of fifth order. Philos. Trans. Roy. Soc. London, CLL (1861).  
  7. A. Colin, Formal computation of Galois groups with relative resolvents, AAECC'95, Springer Verlag, Lecture Notes in Computer Science 948 (1995) 169-182.  
  8. A. Colin, Solving a system of algebraic equations with symmetries. J. Pure and Appl. Algebra (1996).  
  9. H.O. Foulkes, The resolvents of an equation of seventh degree. Quart. J. Math. Oxford Ser. (1931) 9-19.  
  10. G.A.P. Groups, algorithms and programming, Martin Schönert and others, Lehrstuhl D für Mathematik, Rheinisch-Westfälische Technische Hochoschule, Aachem, gap@samson.math.rwth-aachen.de (1993).  
  11. K. Girstmair, On invariant polynomials and their application in field theory. Maths of Comp.48 (1987) 781-797.  
  12. C. Jordan, Traité des substitutions et des équations algébriques, Gauthier-Villard, Paris (1870).  
  13. G. Kemper, Calculating invariant rings of finite groups over arbitrary fields. J. Symbolic Computation (1995).  
  14. F. Lehobey, Resolvent computation by resultants without extraneous powers. J. Pure Appl. Algebra (1999) à paraître.  
  15. E. Luther, Ueber die factoren des algebraisch lôsbaren irreducible Gleichungen vom sechsten Grade und ihren Resolvanten. Journal für Math.37 (1848) 193-220.  
  16. N. Rennert and A. Valibouze, Modules de Cauchy, Rapport interne LIP6 (1997).  
  17. L. Soicher, The computation of the Galois groups, Thesis in departement of computer science, Concordia University, Montreal, Quebec, Canada (1981).  
  18. R.P. Stauduhar, The computation of Galois groups. Math. Comp.27 (1973) 981-996.  
  19. B. Sturmfels, Algorithms in invariant theory, Wien, New-York: Springer Verlag (1993).  
  20. A. Valibouze, Groupes de Galois jusqu'en degré 7. Rapport interne LIP6 (1997).  
  21. A. Vandermonde, Mémoire de l'Académie des Sciences de Paris (1771).  
  22. R.L. Wilson, A method for the determination of the Galois group, Amer. Math. Soc. (1949).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.