# Coarse quantization for random interleaved sampling of bandlimited signals∗∗∗

Alexander M. Powell; Jared Tanner; Yang Wang; Özgür Yılmaz

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

- Volume: 46, Issue: 3, page 605-618
- ISSN: 0764-583X

## Access Full Article

top## Abstract

top## How to cite

topPowell, Alexander M., et al. "Coarse quantization for random interleaved sampling of bandlimited signals∗∗∗." ESAIM: Mathematical Modelling and Numerical Analysis 46.3 (2012): 605-618. <http://eudml.org/doc/222103>.

@article{Powell2012,

abstract = {The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta
analog-to-digital conversion is investigated. Let f be a bandlimited
signal that is sampled on a collection of N interleaved grids
\{kT + Tn\} k ∈ Z
with offsets \hbox\{$\\{T_n\\}_\{n=1\}^N\subset [0,T]$\}. If the offsets Tn are
chosen independently and uniformly at random from [0,T] and if the
sample values of f are quantized with a first order Sigma-Delta
algorithm, then with high probability the quantization error \hbox\{$|f(t) - \widetilde\{f\}(t)|$\}is at most of order
N-1log N.},

author = {Powell, Alexander M., Tanner, Jared, Wang, Yang, Yılmaz, Özgür},

journal = {ESAIM: Mathematical Modelling and Numerical Analysis},

keywords = {Analog-to-digital conversion; bandlimited signals; interleaved sampling; random sampling; sampling expansions; Sigma-Delta quantization; analog-to-digital conversion; sigma-delta quantization},

language = {eng},

month = {1},

number = {3},

pages = {605-618},

publisher = {EDP Sciences},

title = {Coarse quantization for random interleaved sampling of bandlimited signals∗∗∗},

url = {http://eudml.org/doc/222103},

volume = {46},

year = {2012},

}

TY - JOUR

AU - Powell, Alexander M.

AU - Tanner, Jared

AU - Wang, Yang

AU - Yılmaz, Özgür

TI - Coarse quantization for random interleaved sampling of bandlimited signals∗∗∗

JO - ESAIM: Mathematical Modelling and Numerical Analysis

DA - 2012/1//

PB - EDP Sciences

VL - 46

IS - 3

SP - 605

EP - 618

AB - The compatibility of unsynchronized interleaved uniform sampling with Sigma-Delta
analog-to-digital conversion is investigated. Let f be a bandlimited
signal that is sampled on a collection of N interleaved grids
{kT + Tn} k ∈ Z
with offsets \hbox{$\{T_n\}_{n=1}^N\subset [0,T]$}. If the offsets Tn are
chosen independently and uniformly at random from [0,T] and if the
sample values of f are quantized with a first order Sigma-Delta
algorithm, then with high probability the quantization error \hbox{$|f(t) - \widetilde{f}(t)|$}is at most of order
N-1log N.

LA - eng

KW - Analog-to-digital conversion; bandlimited signals; interleaved sampling; random sampling; sampling expansions; Sigma-Delta quantization; analog-to-digital conversion; sigma-delta quantization

UR - http://eudml.org/doc/222103

ER -

## References

top- R.F. Bass and K. Gröchenig, Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal.36 (2005) 773–795. Zbl1096.94008
- J.J. Benedetto, A.M. Powell and Ö. Yılmaz, Sigma-delta (ΣΔ) quantization and finite frames. IEEE Trans. Inf. Theory52 (2006) 1990–2005. Zbl1285.94014
- I. Daubechies and R. DeVore, Reconstructing a bandlimited function from very coarsely quantized data : A family of stable sigma-delta modulators of arbitrary order. Ann. Math.158 (2003) 679–710. Zbl1058.94004
- H.A. David and H.N. Nagarja, Order Statistics, 3th edition. John Wiley & Sons, Hoboken, NJ (2003).
- L. Devroye, Laws of the iterated logarithm for order statistics of uniform spacings. Ann. Probab.9 (1981) 860–867. Zbl0465.60038
- R. Gervais, Q.I. Rahman and G. Schmeisser, A bandlimited function simulating a duration-limited one, in Anniversary volume on approximation theory and functional analysis (Oberwolfach, 1983), Internationale Schriftenreihe zur Numerischen Mathematik65. Birkhäuser, Basel (1984) 355–362.
- C.S. Güntürk, Approximating a bandlimited function using very coarsely quantized data : improved error estimates in sigma-delta modulation. J. Amer. Math. Soc.17 (2004) 229–242. Zbl1032.94502
- S. Huestis, Optimum kernels for oversampled signals. J. Acoust. Soc. Amer.92 (1992) 1172–1173.
- S. Kunis and H. Rauhut, Random sampling of sparse trigonometric polynomials II. orthogonal matching pursuit versus basis pursuit. Found. Comput. Math.8 (2008) 737–763. Zbl1165.94314
- F. Natterer, Efficient evaluation of oversampled functions. J. Comput. Appl. Math.14 (1986) 303–309. Zbl0632.65142
- R.A. Niland, Optimum oversampling. J. Acoust. Soc. Amer.86 (1989) 1805–1812.
- E. Slud, Entropy and maximal spacings for random partitions. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete41 (1977/78) 341–352. Zbl0353.60019
- T. Strohmer and J. Tanner, Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling. SIAM J. Numer. Anal.44 (2006) 1073–1094. Zbl1118.42010
- C. Vogel and H. Johansson, Time-interleaved analog-to-digital converters : Status and future directions. Proceedings of the 2006 IEEE International Symposium on Circuits and Systems (ISCAS) (2006) 3386–3389.
- J. Xu and T. Strohmer, Efficient calibration of time-interleaved adcs via separable nonlinear least squares. Technical Report, Dept. of Mathematics, University of California at Davis. URIhttp://www.math.ucdavis.edu/-strotimer/papers/2006/adc.pdf
- Ö. Yılmaz, Coarse quantization of highly redundant time-frequency representations of square-integrable functions. Appl. Comput. Harmonic Anal.14 (2003) 107–132. Zbl1027.94515
- A.I. Zayed, Advances in Shannon’s sampling theory. CRC Press, Boca Raton (1993). Zbl0868.94011

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.