A priori error estimates for a state-constrained elliptic optimal control problem

Arnd Rösch; Simeon Steinig

ESAIM: Mathematical Modelling and Numerical Analysis (2012)

  • Volume: 46, Issue: 5, page 1107-1120
  • ISSN: 0764-583X

Abstract

top
We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.

How to cite

top

Rösch, Arnd, and Steinig, Simeon. "A priori error estimates for a state-constrained elliptic optimal control problem." ESAIM: Mathematical Modelling and Numerical Analysis 46.5 (2012): 1107-1120. <http://eudml.org/doc/277841>.

@article{Rösch2012,
abstract = {We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.},
author = {Rösch, Arnd, Steinig, Simeon},
journal = {ESAIM: Mathematical Modelling and Numerical Analysis},
keywords = {Elliptic optimal control problem; state constraint; a priori error estimates; elliptic control problem; state constrained; a priori error estimates; convergence rate; finite elements},
language = {eng},
month = {2},
number = {5},
pages = {1107-1120},
publisher = {EDP Sciences},
title = {A priori error estimates for a state-constrained elliptic optimal control problem},
url = {http://eudml.org/doc/277841},
volume = {46},
year = {2012},
}

TY - JOUR
AU - Rösch, Arnd
AU - Steinig, Simeon
TI - A priori error estimates for a state-constrained elliptic optimal control problem
JO - ESAIM: Mathematical Modelling and Numerical Analysis
DA - 2012/2//
PB - EDP Sciences
VL - 46
IS - 5
SP - 1107
EP - 1120
AB - We examine an elliptic optimal control problem with control and state constraints in ℝ3. An improved error estimate of 𝒪(hs) with 3/4 ≤ s ≤ 1 − ε is proven for a discretisation involving piecewise constant functions for the control and piecewise linear for the state. The derived order of convergence is illustrated by a numerical example.
LA - eng
KW - Elliptic optimal control problem; state constraint; a priori error estimates; elliptic control problem; state constrained; a priori error estimates; convergence rate; finite elements
UR - http://eudml.org/doc/277841
ER -

References

top
  1. R.A. Adams and J.J.F. Fournier, Sobolev spaces. Academic Press, San Diego (2007).  
  2. S. Agmon, A. Douglis and L. Nirenberg, Estimates near the boundary for solution of elliptic partial differential equations satisfying general boundary conditions I. Comm. Pure Appl. Math.12 (1959) 623–727.  
  3. J.W. Barrett and C.M. Elliott, A finite-element method for solving elliptic equations with Neumann data on a curved boundary using unfitted meshes. IMA J. Numer. Anal.4 (1984) 309–325.  
  4. J. Bergh and J. Löfström, Interpolation spaces. Springer, Berlin (1976).  
  5. M. Bergounioux, K. Ito and K. Kunisch, Primal-dual strategy for constrained optimal control problems. SIAM J. Control Optim.37 (1999) 1176–1194.  
  6. E. Casas, Control of an elliptic problem with pointwise state constraints. SIAM J. Control Optim.4 (1986) 1309–1322.  
  7. E. Casas and F. Tröltzsch, Recent advances in the analysis of pointwise state-constrained elliptic optimal control problems. ESAIM : COCV16 (2010) 581–600.  
  8. S. Cherednichenko and A. Rösch, Error estimates for the regularization of optimal control problems with pointwise control and state constraints. Z. Anal. Anwendungen27 (2008) 195–212.  
  9. S. Cherednichenko, K. Krumbiegel and A. Rösch, Error estimates for the Lavrentiev regularization of elliptic optimal control problems. Inverse Problems24 (2008).  
  10. P.G. Ciarlet, The finite element method for elliptic problems. SIAM Classics In Applied Mathematics, Philadelphia (2002).  
  11. J.C. de los Reyes, C. Meyer and B. Vexler, Finite element error analysis for state-constrained optimal control of the Stokes equations. Control and Cybernetics37 (2008) 251–284.  
  12. K. Deckelnick and M. Hinze, Convergence of a finite element approximation to a state constrained elliptic control problem. SIAM J. Numer. Anal.45 (2007) 1937–1953.  
  13. K. Deckelnick and M. Hinze, Numerical analysis of a control and state constrained elliptic control problem with piecewise constant control approximations, in Numerical Mathematics and Advanced Applications, edited by K. Kunisch, G. Of and O. Steinbach, Berlin, Heidelberg, Springer-Verlag (2008) 597–604.  
  14. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985).  
  15. M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semi-smooth Newton method. SIAM J. Optim.13 (2003) 865–888.  
  16. M. Hinze, R. Pinnau, M. Ulbrich and S. Ulbrich, Optimization with PDE Constraints. Springer-Verlag, Berlin (2009).  
  17. K. Kunisch and A. Rösch, Primal-dual active set strategy for a general class of constrained optimal control problems. SIAM J. Optim.13 (2002) 321–334.  
  18. C. Meyer, Error estimates for the finite-element approximation of an elliptic control problem with pointwise state and control constraints. Control and Cybernetics37 (2008) 51–85.  
  19. C. Meyer, A. Rösch and F. Tröltzsch, Optimal control of PDEs with regularized pointwise state constraints. Comput. Optim. Appl.33 (2006) 209–228.  
  20. P. Neittaanmaki, J. Sprekels and D. Tiba, Optimization of Elliptic Systems. Springer-Verlag, New York (2006).  
  21. R. Rannacher, Zur L∞-Konvergenz linearer finiter elemente beim Dirichlet-problem. Math. Z.149 (1976) 69–77.  
  22. A. Rösch and F. Tröltzsch, Existence of regular Lagrange multipliers for elliptic optimal control problem with pointwise control-state constraints. SIAM J. Optim.45 (2006) 548–564.  
  23. A.H. Schatz, Pointwise error estimates and asymptotic error expansion inequalities for the finite element method on irregular grids. I : Global estimates. Math. Comput.67 (1998) 877–899.  
  24. A.H. Schatz and L.B. Wahlbin, Interior maximum norm estimates for the finite element method. Math. Comput.31 (1977) 414–442.  
  25. A.H. Schatz and L.B. Wahlbin, On the quasi-optimality in L∞ of the H ˚ 1 -projection into finite element spaces. Math. Comput.38 (1982) 1–22.  
  26. A. Schmidt and K.G. Siebert, Design of Adaptive Finite Element Software, The Finite Element Toolbox ALBERTA. Springer-Verlag, Berlin (2000).  
  27. F. Tröltzsch, Regular Lagrange multipliers for problems with pointwise mixed control-state constraints. SIAM J. Optim.15 (2005) 616–634.  
  28. F. Tröltzsch, Optimal control of partial differential equations. Amer. Math. Soc., Providence, Rhode Island (2010).  
  29. D.Z. Zanger, The inhomogeneous Neumann problem in Lipschitz domains. Commun. Partial Differ. Equ.25 (2000) 1771–1808.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.