Dynamics of Biomembranes: Effect of the Bulk Fluid

A. Bonito; R.H. Nochetto; M.S. Pauletti

Mathematical Modelling of Natural Phenomena (2011)

  • Volume: 6, Issue: 5, page 25-43
  • ISSN: 0973-5348

Abstract

top
We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters.

How to cite

top

Bonito, A., Nochetto, R.H., and Pauletti, M.S.. "Dynamics of Biomembranes: Effect of the Bulk Fluid." Mathematical Modelling of Natural Phenomena 6.5 (2011): 25-43. <http://eudml.org/doc/222241>.

@article{Bonito2011,
abstract = {We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters. },
author = {Bonito, A., Nochetto, R.H., Pauletti, M.S.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {biomembrane; vesicle; red blood cell; helfrich; willmore; bending energy; parametric finite element; Lagrange multipliers; Helfrich; Willmore; parametric finite elements},
language = {eng},
month = {8},
number = {5},
pages = {25-43},
publisher = {EDP Sciences},
title = {Dynamics of Biomembranes: Effect of the Bulk Fluid},
url = {http://eudml.org/doc/222241},
volume = {6},
year = {2011},
}

TY - JOUR
AU - Bonito, A.
AU - Nochetto, R.H.
AU - Pauletti, M.S.
TI - Dynamics of Biomembranes: Effect of the Bulk Fluid
JO - Mathematical Modelling of Natural Phenomena
DA - 2011/8//
PB - EDP Sciences
VL - 6
IS - 5
SP - 25
EP - 43
AB - We derive a biomembrane model consisting of a fluid enclosed by a lipid membrane. The membrane is characterized by its Canham-Helfrich energy (Willmore energy with area constraint) and acts as a boundary force on the Navier-Stokes system modeling an incompressible fluid. We give a concise description of the model and of the associated numerical scheme. We provide numerical simulations with emphasis on the comparisons between different types of flow: the geometric model which does not take into account the bulk fluid and the biomembrane model for two different regimes of parameters.
LA - eng
KW - biomembrane; vesicle; red blood cell; helfrich; willmore; bending energy; parametric finite element; Lagrange multipliers; Helfrich; Willmore; parametric finite elements
UR - http://eudml.org/doc/222241
ER -

References

top
  1. R.A. Adams, J.J.F. Fournier. Sobolev spaces. Pure and Applied Mathematics, second edition, Amsterdam, 2003.  
  2. E. Bänsch. Finite element discretization of the Navier-Stokes equations with a free capillary surface. Numer. Math., 88 (2001), No. 2, 203–235.  
  3. E. Bänsch, P. Morin, R.H. Nochetto. A finite element method for surface diffusion: the parametric case. J. Comput. Phys., 203 (2005), No. 1, 321–343.  
  4. J.W. Barrett, H. Garcke, R. Nürnberg. Parametric approximation of Willmore flow and related geometric evolution equations. SIAM J. Sci. Comput., 31 (2008), No. 1, 225–253.  
  5. A. Bonito, R. H. Nochetto, M. S. Pauletti. Geometrically consistent mesh modification. SIAM J. Numer. Anal., 48 (2010), No. 5, 1877–1899.  
  6. A. Bonito, R.H. Nochetto, M.S. Pauletti. Parametric fem for geometric biomembranes. J. Comput. Phys., 229 (2010), No. 9, 3171–3188.  
  7. P.B. Canham. The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. Journal of Theoretical Biology, 26 (1970), No. 1, 61–81.  
  8. P.G. Ciarlet, J.-L. Lions, editors. Finite element methods. Part 1. Handbook of numerical analysis, 2, North-Holland, Amsterdam, 1991.  
  9. U. Clarenz, U. Diewald, G. Dziuk, M. Rumpf, R. Rusu. A finite element method for surface restoration with smooth boundary conditions. Comput. Aided Geom. Design, 21 (2004), No. 5, 427–445.  
  10. T.A. Davis. Algorithm 832: UMFPACK V4.3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Software, 30 (2004), No. 2, 196–199.  
  11. K. Deckelnick, G. Dziuk. Error analysis of a finite element method for the Willmore flow of graphs. Interfaces Free Bound., 8 (2006), No. 1, 21–46.  
  12. K. Deckelnick, G. Dziuk, C.M. Elliott. Computation of geometric partial differential equations and mean curvature flow. Acta Numer., 14 (2005), 139–232.  
  13. M.C. Delfour, J.-P. Zolésio. Shapes and geometries. Advances in Design and Control, Society for Industrial and Applied Mathematics, Philadelphia, PA, 2001.  
  14. A. Demlow. Higher-order finite element methods and pointwise error estimates for elliptic problems on surfaces. SIAM J. Numer. Anal., 47 (2009), No. 2, 805–827.  
  15. G. Doǧan, P. Morin, R.H. Nochetto, M. Verani. Discrete gradient flows for shape optimization and applications. Comput. Methods Appl. Mech. Engrg., 196 (2007), No. 37-40, 3898–3914.  
  16. M. Droske, M. Rumpf. A level set formulation for Willmore flow. Interfaces Free Bound., 6 (2004), No. 3, 361–378.  
  17. Q. Du, C. Liu, X. Wang. A phase field approach in the numerical study of the elastic bending energy for vesicle membranes. J. Comput. Phys., 198 (2004), No. 2, 450–468.  
  18. Q. Du, C. Liu, X. Wang. Simulating the deformation of vesicle membranes under elastic bending energy in three dimensions. J. Comput. Phys., 212 (2006), No. 2, 757–777.  
  19. Q. Du, Ch. Liu, R. Ryham, X. Wang. Energetic variational approaches in modeling vesicle and fluid interactions. Physica D, 238 (2009), No. 9-10, 923–930.  
  20. G. Dziuk. An algorithm for evolutionary surfaces. Numer. Math., 58 (1991), No. 6, 603–611.  
  21. G. Dziuk. Computational parametric willmore flow. Numer. Math., 111 (2008), No. 1, 55–80.  
  22. S. Esedoglu, S.J. Ruuth, R. Tsai. Threshold dynamics for high order geometric motions. Interfaces Free Bound., 10 (2008), No. 3, 263–282.  
  23. E.A. Evans, R. Skalak. Mechanics and thermodynamics of biomembranes .2. CRC Critical reviews in bioengineering, 3 (1979), No. 4, 331–418.  
  24. M. Giaquinta, S. Hildebrandt. Calculus of variations. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 310, Springer-Verlag, Berlin, 1996.  
  25. W. Helfrich. Elastic properties of lipid bilayers - theory and possible experiments. Zeitschrift Fur Naturforschung C-A Journal Of Biosciences, 28 (1973), 693.  
  26. D. Hu, P. Zhang, W. E. Continuum theory of a moving membrane. Phys. Rev. E (3), 75 (2007), No. 4, 11.  
  27. J.T. Jenkins. The equations of mechanical equilibrium of a model membrane. SIAM J. Appl. Math., 32 (1977), No. 4, 755–764.  
  28. D. Köster, O. Kriessl, K.G. Siebert. Design of finite element tools for coupled surface and volume meshes. Numer. Math. Theor. Meth. Appl., 1 (2008), No. 3, 245–274.  
  29. W. Losert. Personal communication, 2009.  
  30. M.S. Pauletti. Parametric AFEM for geometric evolution equation and coupled fluid-membrane interaction. Thesis (Ph.D.)–University of Maryland, College Park, 2008.  
  31. R.E. Rusu. An algorithm for the elastic flow of surfaces. Interfaces Free Bound., 7 (2005), No. 3, 229–239.  
  32. A. Schmidt, K.G. Siebert. Design of adaptive finite element software: The finite element toolbox ALBERTA, Lecture Notes in Computational Science and Engineering, 42, Springer-Verlag, Berlin, 2005.  
  33. U. Seifert. Configurations of fluid membranes and vesicles. Advances in Physics, 46 (1997), No. 1, 13–137.  
  34. D.J. Steigmann. Fluid films with curvature elasticity. Arch. Ration. Mech. Anal., 150 (1999), No. 2, 127–152.  
  35. D.J. Steigmann, E. Baesu, R.E. Rudd, J. Belak, M. McElfresh. On the variational theory of cell-membrane equilibria. Interfaces Free Bound., 5 (2003), No. 4, 357–366.  
  36. R. Temam. Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam, 1977.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.