Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model

I. S. Ciuperca; L. I. Palade

Mathematical Modelling of Natural Phenomena (2011)

  • Volume: 6, Issue: 5, page 84-97
  • ISSN: 0973-5348

Abstract

top
This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.

How to cite

top

Ciuperca, I. S., and Palade, L. I.. "Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model." Mathematical Modelling of Natural Phenomena 6.5 (2011): 84-97. <http://eudml.org/doc/222251>.

@article{Ciuperca2011,
abstract = {This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.},
author = {Ciuperca, I. S., Palade, L. I.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {FENE dumbbell chains; Fokker-Planck-Smoluchowski equation; entropy function; sectorial operators; exponential convergence; Sobolev logarithmic inequality},
language = {eng},
month = {8},
number = {5},
pages = {84-97},
publisher = {EDP Sciences},
title = {Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model},
url = {http://eudml.org/doc/222251},
volume = {6},
year = {2011},
}

TY - JOUR
AU - Ciuperca, I. S.
AU - Palade, L. I.
TI - Asymptotic Behavior of the Solution of the Distribution Diffusion Equation for FENE Dumbbell Polymer Model
JO - Mathematical Modelling of Natural Phenomena
DA - 2011/8//
PB - EDP Sciences
VL - 6
IS - 5
SP - 84
EP - 97
AB - This paper deals with the evolution Fokker-Planck-Smoluchowski configurational probability diffusion equation for the FENE dumbbell model in dilute polymer solutions. We prove the exponential convergence in time of the solution of this equation to a corresponding steady-state solution, for arbitrary velocity gradients.
LA - eng
KW - FENE dumbbell chains; Fokker-Planck-Smoluchowski equation; entropy function; sectorial operators; exponential convergence; Sobolev logarithmic inequality
UR - http://eudml.org/doc/222251
ER -

References

top
  1. J. W. Barret, C. Schwab, E. Süli. Existence of global weak solutions for some polymeric flow models. Math. Model. Meth. Appl. Sci., 15 (2005), No. 6, 939–983.  
  2. R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 1: Fluid Mechanics. J. Wiley & Sons, New York, 1987.  
  3. R. B. Bird, R. C. Armstrong, O. Hassager. Dynamics of Polymeric Liquids, Vol. 2: Kinetic Theory. J. Wiley & Sons, New York, 1987.  
  4. A. V. Busuioc, I. S. Ciuperca, D. Iftimie and L. I. Palade. The FENE dumbbell polymer model: existence and uniqueness of solutions for the momentum balance equation. Journal of Dynamics and Differential Equations, submitted, 2011.  
  5. J. A. Carillo, S. Cordier, S. Mancini. A decision-making Fokker-Planck model in computational neuroscience. To appear in Journal of Mathematical Biology, 2011.  
  6. L. Chupin. The FENE model for viscoelastic thin film flow. Methods Appl. Anal., 16 (2009), No. 2, 217–261.  
  7. I. S. Ciuperca, L. I. Palade. The steady state configurational distribution diffusion equation of the standard FENE dumbbell polymer model: existence and uniqueness of solutions for arbitrary velocity gradients. Mathematical Models & Methods in Applied Sciences, 19 (2009), 2039–2064.  
  8. I. S. Ciupercă, L. I. Palade. On the existence and uniqueness of solutions of the configurational probability diffusion equation for the generalized rigid dumbbell polymer model. Dynamics of Partial Differential Equations, 7 (2010), 245–263.  
  9. Q. Du, C. Liu, P. Yu. FENE dumbbell model and its several linear and nonlinear closure approximations. Multiscale Model. Simul., 4 (2005), No. 3, 709–731.  
  10. D. Henry. Geometric Theory of semilinear parabolic equations. Lecture notes in mathematics, Vol. 840. Springer Verlag, New York, 1981.  
  11. R. R. Huilgol, N. Phan-Thien. Fluid Mechanics of Viscoelasticity. Elsevier, Amsterdam, 1997.  
  12. B. Jourdain, C. Le Bris, T. Lelièvre, F. Otto. Long-time asymptotics of a multiscale model for a polymeric fluid flows. Arch. Rational Mech. Anal., 181 (2006), 97–148.  
  13. J. G. Kirkwood. Macromolecules, edited by P. L. Auer. Gordon and Breach, 1968.  
  14. R. G. Larson. Constitutive Equations for Polymer Melts and Solutions. Butterworths, Boston, 1988.  
  15. F. Lin, P. Zhang, Z. Zhang. On the global existence of smooth solution to the 2-D FENE Dumbell Model. Commun. Math. Phys., 277 (2008), 531–553.  
  16. N. Masmoudi. Well-Posedness for the FENE dumbbell model of polymeric flows. Comm. Pure Appl. Math., 61 (2008), No. 12, 1685–1714.  
  17. F. A. Morrison. Understanding Rheology. Oxford University Press, Oxford, 2001.  
  18. J. Nečas. Les méthodes directes en théorie des équations elliptiques. Masson, Paris, 1967.  
  19. S. Cleja-Ţigoiu, V. Ţigoiu. Rheology and Thermodynamics, Part I - Rheology. Editura Universităţii din Bucureşti, Bucureşti, 1998.  
  20. V. A. Volpert, A. I. Volpert. Location of spectrum and stability of solutions for monotone parabolic system. Advances in Differential Equations, 2 (1997), No. 5, 811–830.  
  21. H. Zhang, P. Zhang. Local existence for the FENE-dumbbell model of polymeric fluids. Arch. Ratl. Mech. Anal., 181 (2006), 373–400.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.