Dynamics of a Reactive Thin Film

P.M.J. Trevelyan; A. Pereira; S. Kalliadasis

Mathematical Modelling of Natural Phenomena (2012)

  • Volume: 7, Issue: 4, page 99-145
  • ISSN: 0973-5348

Abstract

top
Consider the dynamics of a thin film flowing down an inclined plane under the action of gravity and in the presence of a first-order exothermic chemical reaction. The heat released by the reaction induces a thermocapillary Marangoni instability on the film surface while the film evolution affects the reaction by influencing heat/mass transport through convection. The main parameter characterizing the reaction-diffusion process is the Damköhler number. We investigate the complete range of Damköhler numbers. We analyze the steady state, its linear stability and nonlinear regime. In the latter case, long-wave models are compared with integral-boundary-layer ones and bifurcation diagrams for permanent solitary wave solutions of the different models are constructed. Time-dependent computations with the integral-boundary-layer models show that the system approaches a train of coherent structures that resemble the solitary pulses obtained in the bifurcation diagrams.

How to cite

top

Trevelyan, P.M.J., Pereira, A., and Kalliadasis, S.. "Dynamics of a Reactive Thin Film." Mathematical Modelling of Natural Phenomena 7.4 (2012): 99-145. <http://eudml.org/doc/222330>.

@article{Trevelyan2012,
abstract = {Consider the dynamics of a thin film flowing down an inclined plane under the action of gravity and in the presence of a first-order exothermic chemical reaction. The heat released by the reaction induces a thermocapillary Marangoni instability on the film surface while the film evolution affects the reaction by influencing heat/mass transport through convection. The main parameter characterizing the reaction-diffusion process is the Damköhler number. We investigate the complete range of Damköhler numbers. We analyze the steady state, its linear stability and nonlinear regime. In the latter case, long-wave models are compared with integral-boundary-layer ones and bifurcation diagrams for permanent solitary wave solutions of the different models are constructed. Time-dependent computations with the integral-boundary-layer models show that the system approaches a train of coherent structures that resemble the solitary pulses obtained in the bifurcation diagrams.},
author = {Trevelyan, P.M.J., Pereira, A., Kalliadasis, S.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {thin films; Marangoni effect; chemical reactions},
language = {eng},
month = {7},
number = {4},
pages = {99-145},
publisher = {EDP Sciences},
title = {Dynamics of a Reactive Thin Film},
url = {http://eudml.org/doc/222330},
volume = {7},
year = {2012},
}

TY - JOUR
AU - Trevelyan, P.M.J.
AU - Pereira, A.
AU - Kalliadasis, S.
TI - Dynamics of a Reactive Thin Film
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/7//
PB - EDP Sciences
VL - 7
IS - 4
SP - 99
EP - 145
AB - Consider the dynamics of a thin film flowing down an inclined plane under the action of gravity and in the presence of a first-order exothermic chemical reaction. The heat released by the reaction induces a thermocapillary Marangoni instability on the film surface while the film evolution affects the reaction by influencing heat/mass transport through convection. The main parameter characterizing the reaction-diffusion process is the Damköhler number. We investigate the complete range of Damköhler numbers. We analyze the steady state, its linear stability and nonlinear regime. In the latter case, long-wave models are compared with integral-boundary-layer ones and bifurcation diagrams for permanent solitary wave solutions of the different models are constructed. Time-dependent computations with the integral-boundary-layer models show that the system approaches a train of coherent structures that resemble the solitary pulses obtained in the bifurcation diagrams.
LA - eng
KW - thin films; Marangoni effect; chemical reactions
UR - http://eudml.org/doc/222330
ER -

References

top
  1. A. Oron, S. H. Davis, S. G. Bankoff. Long-scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931–980.  
  2. S. Kalliadasis, U. Thiele (Ed) Thin Films of Soft Matter. Springer-Wien, New York, 2007.  
  3. R. V. Craster, O. K. Matar. Dynamics and stability of thin liquid films. Rev. Mod. Phys., 81 (2009), 1131–1198.  
  4. P. L. Kapitza. Wave flow of thin layers of viscous fluid : I. Free flow. Zh. Eksp. Tear. Fiz., 18 (1948), 3–18.  
  5. P. L. Kapitza. Wave flow of thin layers of a viscous fluid : II. Fluid flow in the presence of continuous gas flow and heat transfer. Zh. Eksp. Teor. Fiz., 18 (1948), 19–28.  
  6. P. L. Kapitza, S. P. Kapitza. Wave flow of thin layers of a viscous fluid : III. Experimental study of undulatory flow conditions. Zh. Eksp. Teor. Fiz., 19 (1949), 105–120.  
  7. H.-C. Chang. Wave evolution on a falling film. Ann. Rev. Fluid Mech., 26 (1994), 103–136.  
  8. H.-C. Chang, E. A. Demekhin. Complex Wave Dynamics on Thin Films. Elsevier, 2002.  
  9. Z. Dagan, L. M. Pismen. Marangoni waves induced by a multistable chemical reaction on thin liquid films. J. Colloid Interface Sci., 99 (1984), 215–225.  
  10. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Interfacial hydrodynamic waves driven by chemical reactions. J. Eng. Math., 59 (2007), 207–220.  
  11. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Dynamics of a horizontal thin liquid film in the presence of reactive surfactants. Phys. Fluids, 19 (2007), 112102.  
  12. A. Pereira, P. M. J. Trevelyan, U. Thiele, S. Kalliadasis. Interfacial instabilities driven by chemical reactions. Eur. Phys. J. Special Topics, 166 (2009), 121–125.  
  13. A. Y. Rednikov, Y. S. Ryazantsev, M. G. Velarde. Drop motion with surfactant transfer in a homogeneous surrounding. Phys. Fluids, 6 (1994), 451–468.  
  14. L. M. Pismen. Chemocapillary instabilities of a contact line. Phys. Rev. E, 81 (2010), 026307.  
  15. E. R. Gilliland, R. F. Baddour, P. L. T. Brian. Gas Absorption Accompanied by a Liquid-phase Chemical Reaction. Am. Inst. Chem. Eng. J., 4 (1958), 223.  
  16. P. M. J. Trevelyan, S. Kalliadasis. Dynamics of a reactive falling film at large Péclet numbers. I. Long-wave approximation. Phys. Fluids, 16 (2004), 3191-3208.  
  17. P. M. J. Trevelyan, S. Kalliadasis. Dynamics of a reactive falling film at large Péclet numbers. II. Nonlinear waves far from criticality : Integral-boundary-layer approximation. Phys. Fluids, 16 (2004), 3209-3226.  
  18. A. A. Nepomnyashchy, M. G. Velarde, P. Colinet. Interfacial Phenomena and Convection. Chapman & Hall, London, 2002.  
  19. R. C. Weast, M. J. Astle. Handbook of Chemistry and Physics. CRC Press, Boca Raton, FL, 1979.  
  20. C. E. Wylock, P. Colinet, T. Cartage, B. Haut. Coupling between mass transfer and chemical reactions during the absorption of CO2 in a NaHCO3-Na2HCO3 brine : Experimental and theoretical study. Int. J. Chem. React. Engng., 6 (2008), A4.  
  21. S. Kalliadasis, E. A. Demekhin, C. Ruyer-Quil, M. G. Velarde. Thermocapillary instability and wave formation on a film falling down a uniformly heated plane. J. Fluid Mech., 492 (2003), 303–338.  
  22. P. Trevelyan, S. Kalliadasis. Wave dynamics on a thin-liquid film falling down a heated wall. J. Eng. Math., 50 (2004), 177–208.  
  23. C. Ruyer-Quil, B. Scheid, S. Kalliadasis, M. G. Velarde, R. Kh. Zeytounian. Thermocapillary long waves in a liquid film flow. Part 1. Low-dimensional formulation. J. Fluid Mech., 538 (2005), 199–222.  
  24. P. M. J. Trevelyan, B. Scheid, C. Ruyer-Quil, S. Kalliadasis. Heated falling films. J. Fluid Mech., 592 (2007), 295–334.  
  25. T. B. Benjamin. Wave formation in laminar flow down an inclined plane. J. Fluid Mech., 2 (1957), 554–574.  
  26. C. S. Yih. Stability of liquid flow down an inclined plane. Phys. Fluids, 6 (1963), 321–334.  
  27. D. J. Benney. Long waves on liquid films. J. Math. Phys., 45 (1966), 150–155.  
  28. B. Scheid, C. Ruyer-Quil, S. Kalliadasis, M. G. Velarde, R. Kh. Zeytounian. Thermocapillary long waves in a liquid film flow. Part 2. Linear stability and nonlinear waves. J. Fluid Mech., 538 (2005), 223–244.  
  29. C. Ruyer-Quil, P. Trevelyan, F. Giorgiutti-Dauphiné, C. Duprat, S. Kalliadasis. Modelling film flows down a fibre. J. Fluid Mech., 603 (2008), 431–462.  
  30. A. Pumir, P. Manneville, Y. Pomeau. On solitary waves running down an inclined plane. J. Fluid Mech., 135 (1983), 27–50.  
  31. C. Nakaya. Waves on a viscous fluid film down a vertical wall. Phys. Fluids, 1 (1989), 1143–1154.  
  32. A. Oron, O. Gottlieb. Nonlinear dynamics of temporally excited falling liquid films. Phys. Fluids, 14 (2002), 2622–2636.  
  33. B. Scheid, C. Ruyer-Quil, U. Thiele, O.A. Kabov, J.C. Legros, P. Colinet. Validity domain of the Benney equation including Marangoni effect for closed and open flows. J. Fluid Mech., 527 (2004), 303–335.  
  34. V. Ya. Shkadov. Wave modes in the flow of thin layer of a viscous liquid under the action of gravity. Izv. Akad. Nauk SSSR, Mekh. Zhidk Gaza, 1 (1967), 43–50.  
  35. C. Ruyer-Quil, P. Manneville. Modeling film flows down inclined planes. Eur. Phys. J. B, 6 (1998), 277–292.  
  36. C. Ruyer-Quil, P. Manneville. Improved Modeling of flows down inclined planes. Eur. Phys. J. B, 15 (2000), 357-369.  
  37. C. Ruyer-Quil, P. Manneville. Further accuracy and convergence results on the modeling of flows down inclined planes by weighted-residual approximations. Phys. Fluids, 14 (2002), 170–183.  
  38. S. Kalliadasis, A. Kiyashko, E. A. Demekhin. Marangoni instability of a thin liquid film heated from below by a local heat source. J. Fluid Mech., 475 (2003), 377–408.  
  39. I. L. Kliakhandler, S. H. Davis, S. G. Bankoff. Viscous beads on vertical fibre. J. Fluid Mech., 429 (2001), 381–390.  
  40. C. Duprat, C. Ruyer-Quil, S. Kalliadasis, F. Giorgiutti-Dauphiné. Absolute and convective instabilities of a viscous film flowing down a vertical fiber. Phys. Rev. Lett., 98 (2007), 244502.  
  41. N. A. Malamataris, M. Vlachogiannis, V. Bontozoglou. Solitary waves on inclined films : Flow structure and binary interactions. Phys. Fluids, 14 (2002), 1082–1094.  
  42. B. Scheid, C. Ruyer-Quil, P. Manneville. Wave patterns in film flows : modelling and three-dimensional waves. J. Fluid Mech., 562 (2006), 183–222.  
  43. E. Doedel, A. Champneys, T. Fairfrieve, Y. Kuznetsov, B. Sandstede, X. Wang. AUTO97 : Continuation and bifurcation software for ordinary differential equations. Concordia University, Montreal, 1997.  
  44. P. Huerre, P. A. Monkewitz. Local and global instabilities in spatially developing flows. Annu. Rev. Fluid. Mech., 22 (1990), 473–537.  
  45. P. Huerre, M. Rossi. Hydrodynamic and Nonlinear Instabilities. In : Hydrodynamic Instabilities in Open Flows (Ed. C. Godréche, P. Manneville), Cambridge University Press, 1998, 81-294.  
  46. H.-C. Chang, E. A. Demekhin, D. I. Kopelevich. Stability of a solitary pulse against wave packet disturbances in an active medium. Phys. Rev. Lett., 75 (1995), 1747–1750.  
  47. E. A. Demekhin, E. N. Kalaidin, S. Kalliadasis, S. Yu. Vlaskin. Three-dimensional localized coherent structures of surface turbulence. II. Λ solitons., Phys. Fluids, 19 (2007), 114104.  
  48. A. A. Golovin, A. A. Nepomnyashchy, L. M. Pismen. Interaction between short-scale Marangoni convection and long-scale deformation instability. Phys. Fluids, 6 (1994), 34–48.  
  49. U. Thiele, E. Knobloch. Thin liquid films on a slightly inclined heated plate. Physica D, 190 (2004), 213–248.  

NotesEmbed ?

top

You must be logged in to post comments.