Soliton-pair Propagation under Thermal Bath Effect

N. Boutabba; H. Eleuch

Mathematical Modelling of Natural Phenomena (2012)

  • Volume: 7, Issue: 2, page 32-37
  • ISSN: 0973-5348

Abstract

top
We consider two atomic transitions excited by two variable laser fields in a three-level system. We study the soliton-pair propagation out of resonance and under thermal bath effect. We present general analytical implicit expression of the soliton-pair shape. Furthermore, we show that when the coupling to the environment exceeds a critical value, the soliton-pair propagation through three-level atomic system will be prohibited.

How to cite

top

Boutabba, N., and Eleuch, H.. "Soliton-pair Propagation under Thermal Bath Effect." Mathematical Modelling of Natural Phenomena 7.2 (2012): 32-37. <http://eudml.org/doc/222336>.

@article{Boutabba2012,
abstract = {We consider two atomic transitions excited by two variable laser fields in a three-level system. We study the soliton-pair propagation out of resonance and under thermal bath effect. We present general analytical implicit expression of the soliton-pair shape. Furthermore, we show that when the coupling to the environment exceeds a critical value, the soliton-pair propagation through three-level atomic system will be prohibited.},
author = {Boutabba, N., Eleuch, H.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {quantum optics; non linear optics},
language = {eng},
month = {2},
number = {2},
pages = {32-37},
publisher = {EDP Sciences},
title = {Soliton-pair Propagation under Thermal Bath Effect},
url = {http://eudml.org/doc/222336},
volume = {7},
year = {2012},
}

TY - JOUR
AU - Boutabba, N.
AU - Eleuch, H.
TI - Soliton-pair Propagation under Thermal Bath Effect
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/2//
PB - EDP Sciences
VL - 7
IS - 2
SP - 32
EP - 37
AB - We consider two atomic transitions excited by two variable laser fields in a three-level system. We study the soliton-pair propagation out of resonance and under thermal bath effect. We present general analytical implicit expression of the soliton-pair shape. Furthermore, we show that when the coupling to the environment exceeds a critical value, the soliton-pair propagation through three-level atomic system will be prohibited.
LA - eng
KW - quantum optics; non linear optics
UR - http://eudml.org/doc/222336
ER -

References

top
  1. L. Allen, J. Eberly. Optical Resonance and Two-Level Atoms. Dover, New York, 1987.  
  2. G. Alzetta, A. Gozzini, L. Moi, G. Orriols. Experimental-method for observation of Rf Transitions and Laser beat resonances in oriented Na vapor. Nuova Cimento, 36 (1976), No. 1, 5–20.  
  3. A. Baas, J. Karr, H. Eleuch, E. Giacobino. Optical bistability in semiconductor microcavities. Phys. Rev. A, 69 (2004), No. 2, 023809.  
  4. A. Bishop, J. Krumhansl, S. Trullinger. Solitons in condensed matter : A paradigm. Physica D, 1 (1980), No. 1, 1-44.  
  5. K. Boller, A. Imamogluand, S. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett66 (1991), No. 20, 2593–2596.  
  6. N. Boutabba, L. Hassine, A. Rihani, H. Bouchriha. Analytic photocurrent transient response of an Al/6T/ITO photovoltaic cell using Volterra series analysis. Synthetic Metals, 139 (2003), No. 2, 227–231.  
  7. N. Boutabba, L. Hassine, N. Loussaief, F. Kouki, H. Bouchriha. Volterra series analysis of the photocurrent in an Al/6T/ITO photovoltaic device. Organic Electronics, 4 (2003), No. 1, 1–8.  
  8. N. Boutabba, H. Eleuch, H. Bouchriha. Thermal bath effect on soliton propagation in three level atomic system. Synthetic Metals, 159 (2009), No. 13, 1239–1243.  
  9. M. Chernodub, Sh. Hu, A. Niemi. Topological solitons and folded proteins. Phys. Rev. E, 82 (2010), No. 1, 011916.  
  10. C. Lechner, S. Husa, C. Aichelburg. SU(2) cosmological solitons. Phys. Rev. D, 62 (2000), No. 4, 044047.  
  11. G. Dridi, S. Guerin, V. Hakobyan, H Jauslin, H Eleuch. Ultrafast stimulated Raman parallel adiabatic passage by shaped pulses. Phys. Rev A, 80 (2009), No. 4, 043408.  
  12. J. Eberly. Transmission of dressed field in 3-level media. Quantum Semiclass. Opt.7 (1995), No. 3, 373–384.  
  13. H. Eleuch, N. Rachid. Autocorrelation function of microcavity-emitting field in the non-linear regime. Eur. Phys. J. D., 57 (2010), No. 2, 259–264.  
  14. H. Eleuch. Autocorrelation function of microcavity-emitting field in the linear regime. Eur. Phys. J. D., 48 (2008), No. 1, 139–143.  
  15. H. Eleuch. Noise spectra of microcavity-emitting field in the linear regime. Eur. Phys. J. D., 49 (2008), No. 3, 391-395.  
  16. H. Eleuch. Quantum trajectories and autocorrelation function in semiconductor microcavity. Applied Mathematics & Information Science3 (2009), No. 3, 185–196.  
  17. H. Eleuch, N. Ben Nessib, R. Bennaceur. Quantum Model of emission in weakly non ideal plasma. Eur. Phys. J. D, 29 (2004), No. 3, 391–395.  
  18. H. Eleuch, R. Bennaceur. Non linear dissipations and the quantum noise of light in semiconductor microcavities. J. Opt. B : Quantum and Semiclassical Optics, 6 (2004), No. 4, 189–195.  
  19. H. Eleuch. Photon statistics of light in semiconductor microcavities. J. Phys. B, 41 (2008), No. 5, 055502.  
  20. H. Eleuch, D. Elser, R. Bennaceur. Soliton propagation in an absorbing three level atomic system. Laser Phys. Lett., 1 (2004), No. 8, 391–396.  
  21. H. Eleuch, R. Bennaceur. An optical Soliton pair among absorbing three-level atoms. J. Opt. A : Pure Appl.Opt., 5 (2003), No. 5, 528–533.  
  22. E. Giacobino, J. Karrr, G. Messin, H. Eleuch. Quantum optical effects in semiconductor microcavities. C. R. Physique, 3 (2002), No. 1, 41–52.  
  23. H. Gray, R. Whitley, C. Stroud. Coherent trapping of atomic populations. Optics Letters, 3 (1978), No. 6, 218–220.  
  24. Y. Guo, C. Kao, E. Li, K. Chiang. Nonlinear Photonics, Series in Photonics, Springer, New York, 2002.  
  25. H. Jabri, H. Eleuch, T. Djerad. Lifetimes of atomic Rydberg states by autocorrelation function. Laser Phys. Lett., 2 (2005), No. 5, 253–257.  
  26. P. Jha, H. Eleuch, Y. Rostovtsev. Coherent control of atomic excitation using off-resonant strong few-cycle pulses. Phys. Rev. A, 82 (2010), No. 4, 045805.  
  27. G. Korchemsky, I. Krichever. Solitons in high-energy QCD. Nucl. Phys. B, 505 (1997), No. 1–2, 387-414.  
  28. L. Mandel, E. Wolf. Optical Coherence and Quantum Optics, Cambridge University Press, New York, 1995.  
  29. M. Marklund, D. Tskhakaya, P. Shukla. Quantum electrodynamical shocks and solitons in astrophysical plasmas. Europhys. Lett., 72 (2005), No. 6, 950-954.  
  30. G. Messin, J. Karr, H. Eleuch, J. Courty, E. Giacobino. Squeezed states and quantum noise of light in semiconductor microcavities. J. Phys. : Condens. Matter, 11 (1999), No. 31, 6069–6078.  
  31. Q. Park and H. Shin. Systematic construction of multicomponent optical solitons. Phys. Rev. E, 61 (2000), No. 3, 3093.  
  32. Y. Rostovstev, H. Eleuch, A. Svidzinsky, H. Li, V. Sautenkov, M. Scully. Generation of maximal coherence in a 2-level system via breaking of adiabaticity. Phys. Rev. A., 79 (2009), No. 6, 063833.  
  33. E. Sete and H. Eleuch. Interaction of a quantum well with squeezed light : Quantum statistical properties. Phys. Rev. A, 82 (2010), No. 4, 043810.  
  34. M. Wesner, C. Herden, R. Pankrath, D. Kip, P. Moretti. Temporal development of photorefractive solitons up to telecommunication wavelengths in strontium-barium niobate waveguides. Phys. Rev. E, 64 (2001), No. 3, 036613. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.