Numerical Modelling of Contact Elastic-Plastic Flows

N. M. Bessonov; S. F. Golovashchenko; V. A. Volpert

Mathematical Modelling of Natural Phenomena (2009)

  • Volume: 4, Issue: 1, page 44-87
  • ISSN: 0973-5348

Abstract

top
Wilkins' method has been successfully used since early 60s for numerical simulation of high velocity contact elastic-plastic flows. The present work proposes some effective modifications of this method including more sophisticated material model including the Baushinger effect; modification of the algorithm based on correction of the initial configuration of a solid; a contact algorithm based on the idea of a mild contact.

How to cite

top

Bessonov, N. M., Golovashchenko, S. F., and Volpert, V. A.. "Numerical Modelling of Contact Elastic-Plastic Flows." Mathematical Modelling of Natural Phenomena 4.1 (2009): 44-87. <http://eudml.org/doc/222347>.

@article{Bessonov2009,
abstract = { Wilkins' method has been successfully used since early 60s for numerical simulation of high velocity contact elastic-plastic flows. The present work proposes some effective modifications of this method including more sophisticated material model including the Baushinger effect; modification of the algorithm based on correction of the initial configuration of a solid; a contact algorithm based on the idea of a mild contact.},
author = {Bessonov, N. M., Golovashchenko, S. F., Volpert, V. A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {continuum mechanics; numerical simulation; Wilkins' method; contact algorithm; elastic-plastic flow; contact algorithm},
language = {eng},
month = {1},
number = {1},
pages = {44-87},
publisher = {EDP Sciences},
title = {Numerical Modelling of Contact Elastic-Plastic Flows},
url = {http://eudml.org/doc/222347},
volume = {4},
year = {2009},
}

TY - JOUR
AU - Bessonov, N. M.
AU - Golovashchenko, S. F.
AU - Volpert, V. A.
TI - Numerical Modelling of Contact Elastic-Plastic Flows
JO - Mathematical Modelling of Natural Phenomena
DA - 2009/1//
PB - EDP Sciences
VL - 4
IS - 1
SP - 44
EP - 87
AB - Wilkins' method has been successfully used since early 60s for numerical simulation of high velocity contact elastic-plastic flows. The present work proposes some effective modifications of this method including more sophisticated material model including the Baushinger effect; modification of the algorithm based on correction of the initial configuration of a solid; a contact algorithm based on the idea of a mild contact.
LA - eng
KW - continuum mechanics; numerical simulation; Wilkins' method; contact algorithm; elastic-plastic flow; contact algorithm
UR - http://eudml.org/doc/222347
ER -

References

top
  1. G. Alfano, F. De Angelis, L. Rosati. General solution procedures in elasto/viscoplasticity. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 5123-5147.  
  2. F. Auricchio. A viscoplastic constitutive equation bounded between two generalized plasticity models. International Journal of Plasticity, 13 (1997), 697-721.  
  3. F. Auricchio. A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic model. International Journal of Plasticity, 17 (2001), 971-990.  
  4. F. Auricchio, R.L. Taylor. Shape-memory alloys: modelling and numerical simulations of the finite-strain superelastic behavior. Computer Methods in Applied Mechanics and Engineering, 143 (1997), 175-194.  
  5. I.A. Balagansky, Yu.A. Karanik, V.A. Agureikin, A.V. Vinogradov, A.I. Balagansky. Fracture behavior of explosively loaded spherical molded steel shells. Theoretical and applied fracture mechanics, 36 (2001), 165-173.  
  6. R.R. Balokhonov, P.V. Makarov, V.A. Romanova, I.Yu. Smolin. Simulation of crystal plasticity under dynamic loading. Computational Materials Science, 16 (1999), 355-361.  
  7. E. Baron, M.B. Rubin, D.Z. Yankelevsky. Thermomechanical constitutive equations for the dynamic response of ceramics. International Journal of Solids and Structures, 40 (2003), 4519-4548.  
  8. J.B. Bdzil, D. S. Stewart, T. L. Jackson. Program burn algorithms based on detonation shock dynamics: discrete approximations of detonation flows with discontinuous front models. Journal of Computational Physics, 174 (2001), No. 2, 870-902.  
  9. D.J. Benson, L. Stainier. An Eulerian shell formulation for fluid-structure interaction. Computer Methods in Applied Mechanics and Engineering, 187 (2000), 571-590.  
  10. G. C. Bessette, E. B. Becker, L. M. Taylor, D. L. Littlefield. Modeling of impact problems using an h-adaptive, explicit Lagrangian finite element method in three dimensions. Computer Methods in Applied Mechanics and Engineering, 192 (2003), No. 13-14, 1649-1679.  
  11. N.M. Bessonov, D.J. Song. Application of vector calculus to numerical simulation of continuum mechanics problems. Journal of Computational Physics, 167 (2001), No. 1, 22-38.  
  12. N. Bessonov, S. Golovashchenko. Numerical simulation of pulsed electromagnetic stamping processes. Proceedings of 1st International Conference on High Speed Forming, Dortmund, Germany, 2004, 83-91.  
  13. M. Brünig. Nonlinear finite element analysis based on a large strain deformation theory of plasticity. Computers & Structures, 69 (1998), 117-128.  
  14. D. Chen, S.T.S. Al-Hassani, Z. Yin, Y. Yu. Modelling shock loading behavior of concrete. International Journal of Solids and Structures, 38 (2001), 8787-8803.  
  15. O.I. Cherepanov. Localized viscoelastoplastic strain in mesovolume of heterogeneouse medium under different loading types. Theoretical and applied fracture mechanics, 31 (1999), 189-202.  
  16. O.I. Cherepanov, I.Yu. Smolin, Yu.P. Stefanov, P.V. Makarov. Integration of influence of internal structure of heterogeneous materials on plastic flow and fracture. Computational Materials Science, 16 (1999), 25-31.  
  17. P.W. Christensen. A nonsmooth Newton method for elastoplastic problems. Computer Methods in Applied Mechanics and Engineering, 191 (2002), 1189-1219.  
  18. P.G. Ciarlet. Mathematical Elasticity, 1, Three Dimensional Elasticity. North-Holland, Amsterdam, 1993.  
  19. G. Cocchetti, U. Perego. A rigorous bound on error in backward-difference elastoplastic time-integration. Computer Methods in Applied Mechanics and Engineering, 192 (2003), 4909-4927.  
  20. A. Düster, E. Rank. A p-version finite element approach for two- and three-dimensional problems of the J2 flow theory with non-linear isotropic hardening. International Journal for Numerical Methods in Engineering, 53 (2002), 49-63.  
  21. N.A. Fellows, P.C. Barton. Development of impact model for ceramic-faced semi-infinite armor. International Journal of Impact Engineering, 22 (1999), 793-811.  
  22. Z.Q. Feng, Z. Feng, M. Domaszewski. Some computational aspects for analysis of low- and high- velocity impact of deformable bodies. International Journal of Non-Linear Mechanics, 37 (2002), 1029-1036.  
  23. J. Fish, K. Shek. Computational aspects of incrementally objective algorithms for large deformation plasticity. International Journal for numerical methods in engineering, 44 (1999), 839-851.  
  24. S. Golovashchenko N. Bessonov. Development of Sharp Flanging Technology for Aluminum Panels. Proceedings of the 6th International Conference on Numerical Simulation of 3D Sheet Forming Processes, NUMISHEET 2005, Detroit, MI, 687-690.  
  25. S. Golovashchenko, N. Bessonov, R. Davies. Analysis of Blank-Die Contact Interaction in Pulsed Forming Processes. 3st International Conference on High Speed Forming, Germany, 2008.  
  26. J. Guo, J.V. Cox. Implementation of a plasticity bond model for reinforced concrete. Computers & Structures, 77 (2000), 65-82.  
  27. Y.M. Gupta, J.L. Ding. Impact load spreading in layered materials and structures: concept and quantitative measure. International Journal of Impact Engineering, 27 (2002),, 277-291.  
  28. E. Hoashi, T. Yokomine, A. Shimizu, T. Kunugi. Numerical analysis of wave-type heat transfer propagating in a thin foil irradiated by short-pulsed laser. International Journal of Heat and Mass Transfer, 46 (2003), 4083-4095.  
  29. B. P. Howell, G. J. Ball. A Free-Lagrange augmented Godunov method for the simulation of elasticplastic solids. Journal of Computational Physics, 175 (2002), No. 1, 128-167.  
  30. L. Jing. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. International Journal of Rock Mechanics and Mining Sciences, 40 (2003), No. 3, 283-353.  
  31. L. Jing, J. A. Hudson. Numerical methods in rock mechanics. International Journal of Rock Mechanics and Mining Sciences, 39 (2002), No. 4, 409-427.  
  32. G.R. Johnson, S.R. Beissel. Damping algorithms and effects for explicit dynamics computations. International Journal of Impact Engineering, 25 (2001), 911-925.  
  33. A.S. Khan, S. Huang, Continuum theory of plasticity. John Wiley & Sons, New-York, 1995.  
  34. S.P. Kiselev, V.P. Kiselev. Superdeep penetration of particles into a metal target. International Journal of Impact Engineering, 27 (2002), 135-152.  
  35. A. Le van, G. de Saxcae, P. Le Grognec. General formulation for local integration in standard elastoplasticity with an arbitrary hardening model. Computers and Structures, 81 (2003), 2099-2109.  
  36. M. Lee, Y.H. Yoo. Analysis of ceramic/metal armour systems. International Journal of Impact Engineering, 25 (2001), 819-829.  
  37. Z.Y. Liu, S. Kubota, S. Itoh. Numerical study on hypervelocity acceleration of flyer plates by overdriven detonation of high explosive. International Journal of Impact Engineering, 26 (2001), 443-452.  
  38. V. A. Lubarda. Elastoplatcity theory, CRP Press, New York, 2000.  
  39. L.X. Luccioni, J.M. Pestana, A. Rodriguez-Marek. An implicit integration algorithm for the finite element implementation of a nonlinear anisotropic material model including hysteretic nonlinearity. Computer Methods in Applied Mechanics and Engineering, 190 (2000), 1827-1844.  
  40. M. Maenchen, S. Sack. The tensor code. In: B. Alder (Ed.), Methods in Computational Physics, Vol. 3, Academic Press, New-York, 1964, 181-210.  
  41. R. Mahnken. Anisotropic creep modelling based on elastic projection operators with applications to CMSX-4 superalloy. Computer Methods in Applied Mechanics and Engineering, 191 (2002), 1611-1637.  
  42. P.V. Makarov, V.A. Romanova. Mesoscale plastic flow generation and development for polycrystals. Theoretical and Applied Fracture Mechanics, 33 (2000), 1-7.  
  43. P.V. Makaraov, S. Schmauder, O.I. Cherepanov, I.Yu. Smolin, V.A. Romanova, R.R. Balokhonov, D.Yu. Saraev, E. Soppa, P. Kizler, G. Fischer, S. Hu, M. Ludwig. Simulation of elastic-plastic deformation and fracture of materials at micro-, meso- and macrolevels. Theoretical and Applied Fracture Mechanics, 37 (2001), 183-244.  
  44. Mariotti, J. P. Perlat, J. M. Guérin. A numerical approach for partially saturated geomaterials under shock. International Journal of Impact Engineering, 28 (2003), No. 7, 717-741.  
  45. G. H. Miller, P. Colella. A High-order Eulerian Godunov method for elasticplastic flow in solids. Journal of Computational Physics, 167 (2001), No. 1, 131-176.  
  46. F.J. Montáns. Implicit algorithms for multilayer J2 plasticity. Computer Methods in Applied Mechanics and Engineering, 189 (2000), 673-700.  
  47. S. K. Naboulsi, A. N. Palazotto. Damage model for metalmatrix composite under high intensity loading. International Journal of Plasticity, 19 (2003), No. 4, 435-468.  
  48. L. Noels, L. Stainier, J.-P. Ponthot. On the use of large time steps with an energy momentum conserving algorithm for non-linear hypoelastic constitutive models. International Journal of Solids and Structures, 41 (2004), 663693.  
  49. P. Papadopoulos, J. Lu. On the formulation and numerical solution of problems in anisotropic finite plasticity. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 4889-4910.  
  50. A.N. Parshikov, S.A. Medin. Smoothed particle hydrodynamics using interparticle contact algorithms. Journal of Computational Physics, 180 (2002), No. 1, 358-382.  
  51. V.L. Popov, A. Gervé, B. Kehrwald, I. Yu. Smolin. Simulation of wear in combustion engines. Computational Materials Science, 19 (2000), 285-291.  
  52. J.P. Ponthot. Unified stress update algorithms for the numerical simulation of large deformation elasto-plastic and elasto-viscoplastic processes. International Journal of Plasticity, 18 (2002), 91-126.  
  53. B.A. Roeder, C.T. Sun. Dynamic penetration of alumina/aluminum laminates: experiments and modelling. International Journal of Impact Engineering, 25 (2001), 169-185.  
  54. V. Romanova, R. Balokhonov, P. Makarov, S. Schmauder, E. Soppa. Simulation of elasto-plastic behaviour of an artificial 3D-structure under dynamic loading. Computational Materials Science, 28 (2003), 518528.  
  55. M. B. Rubin, S. R. Bodner. A three-dimensional nonlinear model for dissipative response of soft tissue. International Journal of Solids and Structures, 39 (2002), No. 19, 5081-5099.  
  56. D. Sherman. Impact failure mechanisms in alumina tiles on finite thickness support and the effect of confinement. International Journal of Impact Engineering, 24 (2000), 313-328.  
  57. C.H.M. Simha, S.J. Bless, A. Bedford. Computational modelling of the penetration response of a high-purity ceramic. International Journal of Impact Engineering, 27 (2002), 65-86.  
  58. J. C. Simo, T. J. R. Hughes. Computational inelasticity. In: Interdisciplinary Applied Mathematics, Vol.7, 1998.  
  59. I.Y. Smolin, P.V. Makarov, D.V. Shmick, I.V. Savlevich. A micropolar model od plastic deformation of polycrystals at the mesolevels. Computational Materials Science, 19 (2000), 133-142.  
  60. S.C. Song, Z.P. Duan, D.W. Tan. The application of B-P constitutive equations in finite element analysis of high velocity impact. International Journal of Solids and Structures, 38 (2001), 5215-5222.  
  61. J.B. Stevens, R.C. Batra. Adiabatic shear bands in the Taylor impact test for a WHA rod. International Journal of Plasticity, 14 (1998), No. 9, 841-854.  
  62. Y.P. Stefanov. Wave dynamics of cracks and multiple contact surface interaction. Theoretical and Applied Fracture Mechanics, 34 (2000), 101-108.  
  63. H.H. Vaziri, J.S. Jalali, R. Islam. An analytical model for stability analysis of rock layers over a circular opening. International Journal of Solids and Structures, 38 (2001), 3735-3757.  
  64. M. Wallin, A. Ristnmaa. Accurate stress updating algorithm based on constant strain rate assumption. Computer Methods in Applied Mechanics and Engineering, 190 (2001), 5583-5601.  
  65. M.L. Wilkins. Calculation of elastic-plastic flow. In: B. Alder (Ed.), Methods in Computational Physics, Vol. 3, Academic Press, New-York, 1964, 211-263.  
  66. M.L. Wilkins. Calculation of elastic-plastic flow. In: B. Alder (Ed.), Numerical Methods in Hydrodynamics, translated from English, Mir, Moscow, 1967.  
  67. M.L. Wilkins. Computer simulation of dynamic phenomena. Scientific Computation, Springer, 1998.  
  68. M.L. Wilkins. Mechanics of penetration and perforation. International Journal of Engineering Sciences, 16 (1978), 793-807.  
  69. M.L. Wilkins. Use of artificial viscosity in multidimensional fluid dynamics calculations. Journal of Computational Physics, 36 (1980), 291-303.  
  70. M.L. Wilkins. Modelling the behavior of materials. In: International Conference on Structural Impact and Crachworthiness, 1984, 243-277.  
  71. M.L, Wilkins, M.W. Guinan. Impact of cylinders on a rigid boundary. Journal of Applied Physics, 44 (1973), 1200-1206.  
  72. M.L, Wilkins, M.W. Guinan. Plane stress calculations with a two dimensional elastic-plastic computer program. UCRL-77251. University of California, Lawrence Livermore Laboratory, (1976).  
  73. K. Wünnemann, B.A. Ivanov. Numerical modelling of the impact crater depthdiameter dependence in an acoustically fluidized target. Planetary and Space Science, 51 (2003), 831-845.  
  74. F. Xiao. Unified formulation for compressible and incompressible flows by using multi-integrated moments I: one-dimensional inviscid compressible flow. Journal of Computational Physics, 195 (2004), 629-654.  
  75. R. Zaera, S. Sánchez-Sáez, J.L. Pérez-Castellanos, C. Navarro. Modelling of the adhesive layer in mixed ceramic/metal armours subjected to impact. Composites part A: Applied Science and Manufacturing, 31 (2000), 823-833.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.