# A Langevin Description for Driven Granular Gases

P. Maynar; M. I. García de Soria

Mathematical Modelling of Natural Phenomena (2011)

- Volume: 6, Issue: 4, page 87-117
- ISSN: 0973-5348

## Access Full Article

top## Abstract

top## How to cite

topMaynar, P., and García de Soria, M. I.. "A Langevin Description for Driven Granular Gases." Mathematical Modelling of Natural Phenomena 6.4 (2011): 87-117. <http://eudml.org/doc/222351>.

@article{Maynar2011,

abstract = {The study of the fluctuations in the steady state of a heated granular system is
reviewed. A Boltzmann-Langevin description can be built requiring consistency with the
equations for the one- and two-particle correlation functions. From the Boltzmann-Langevin
equation, Langevin equations for the total energy and the transverse velocity field are
derived. The existence of a fluctuation-dissipation relation for the transverse velocity
field is also studied. },

author = {Maynar, P., García de Soria, M. I.},

journal = {Mathematical Modelling of Natural Phenomena},

keywords = {kinetic theory; Boltzmann equation; granular gases; hydrodynamics},

language = {eng},

month = {7},

number = {4},

pages = {87-117},

publisher = {EDP Sciences},

title = {A Langevin Description for Driven Granular Gases},

url = {http://eudml.org/doc/222351},

volume = {6},

year = {2011},

}

TY - JOUR

AU - Maynar, P.

AU - García de Soria, M. I.

TI - A Langevin Description for Driven Granular Gases

JO - Mathematical Modelling of Natural Phenomena

DA - 2011/7//

PB - EDP Sciences

VL - 6

IS - 4

SP - 87

EP - 117

AB - The study of the fluctuations in the steady state of a heated granular system is
reviewed. A Boltzmann-Langevin description can be built requiring consistency with the
equations for the one- and two-particle correlation functions. From the Boltzmann-Langevin
equation, Langevin equations for the total energy and the transverse velocity field are
derived. The existence of a fluctuation-dissipation relation for the transverse velocity
field is also studied.

LA - eng

KW - kinetic theory; Boltzmann equation; granular gases; hydrodynamics

UR - http://eudml.org/doc/222351

ER -

## References

top- A. Baskaran, J. W. Dufty, J. J. Brey. Transport coefficients for the hard-sphere granular fluid. Phys. Rev. E, 77 (2008), No. 3, 031311.
- M. Bixon, R. Zwanzig. Boltzmann-Langevin Equation and Hydrodynamic Fluctuations. Phys. Rev., 187 (1969), No. 1, 267–272.
- J. J. Brey, J. W. Dufty, M. J. Ruiz-Montero, in Granular Gas Dynamics, edited by T. Pöschel and N. Brilliantov. Springer, Berlin, 2003.
- J. J. Brey, M. I. García de Soria, P. Maynar. Breakdown of hydrodynamics in the inelastic Maxwell model of granular gases. Phys. Rev. E, 82 (2010), No. 2, 021303.
- J. J. Brey, M. I. García de Soria, P. Maynar. Breakdown of the fluctuation-dissipation relations in granular gases. EPL, 84 (2008), No. 2, 24002.
- J. J. Brey, P. Maynar, M. I. García de Soria. Fluctuating hydrodynamics for dilute granular gases. Phys. Rev. E, 79 (2009), No. 5, 051305.
- J. J. Brey, M. I. García de Soria, P. Maynar, M. J. Ruiz-Montero. Energy fluctuations in the homogeneous cooling state of granular gases. Phys. Rev. E, 70 (2004), No. 1, 011302.
- J. J. Brey, M. J. Ruiz-Montero, F. Moreno. Boundary conditions and normal state for a vibrated granular fluid. Phys. Rev. E, 62 (2000), No. 4, 5339–5346.
- R. Cafiero, S. Luding, H. J. Herrmann. Two-Dimensional Granular Gas of Inelastic Spheres with Multiplicative Driving. Phys. Rev. Lett., 84 (2000), No. 26, 6014–6017.
- M. H. Ernst, E. Trizac, A. Barrat. The Boltzmann Equation for Driven Systems of Inelastic Soft Spheres. J. Stat. Phys., 124 (2006), No. 2–4, 549–586. Zbl1134.82034
- M. H. Ernst, E. Trizac, A. Barrat. The rich behavior of the Boltzmann equation for dissipative gases. Europhys. Lett., 76 (2006), No. 1, 56–62.
- A. Fiege, T. Aspelmeier, A. Zippelius. Long-Time Tails and Cage Effect in Driven Granular Fluids. Phys. Rev. Lett., 102 (2009), No. 9, 098001.
- M. I. García de Soria, P. Maynar, G. Schehr, A. Barrat, E. Trizac. Dynamics of annihilation. II. Fluctuations of global quantities. Phys. Rev. E, 77 (2008), No. 5, 051128.
- M. I. García de Soria, P. Maynar, E. Trizac. Energy fluctuations in a randomly driven granular fluid. Mol. Phys., 107 (2009), No. 4–6, 383–392.
- V. Garzó, J. M. Montanero. Transport coefficients of a heated granular gas. Physica A, 313 (2002), No. 3–4, 336–356. Zbl0998.82026
- I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), No. 11, 1619–1622.
- A. Goldshtein, M. Shapiro. Mechanics of collisional motion of granular materials. Part 1. General hydrodynamic equations. J. Fluid. Mech., 282 (1995), 75–114. Zbl0881.76010
- P. K. Haff. Grain flow as a fluid-mechanical phenomenon. J. Fluid. Mech., 134 (1983), 401–430. Zbl0537.76005
- C. C. Maaß, N. Isert, G. Maret, C. M. Aegerter. Experimental Investigation of the Freely Cooling Granular Gas. Phys. Rev. Lett., 100 (2008), No. 24, 248001.
- P. Maynar, M. I. García de Soria, E. Trizac. Fluctuating hydrodynamics for driven granular gases. EPJ ST, 179 (2009), 123–139.
- S. McNamara, W. R. Young. Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E, 53 (1996), No. 5, 5089–5100.
- J. M. Montanero, A. Santos. Computer simulation of uniformly heated granular fluids. Granular Matter, 2 (2000), No. 2, 53–64.
- S. J. Moon, M. D. Shattuck, J. B. Swift. Velocity distributions and correlations in homogeneously heated granular media. Phys. Rev E, 64 (2001), No. 3, 031303.
- I. Pagonabarraga, E. Trizac, T. P. C. van Noije, M. H. Ernst. Randomly driven granular fluids: Collisional statistics and short scale structure. Phys. Rev. E, 65 (2001), No. 1, 011303.
- B. Painter, M. Dutt, R. Behringer. Energy dissipation and clustering for a cooling granular material on a substrate. Physica D, 175 (2003), No. 1–2, 43–68. Zbl1011.82510
- A. Prevost, D. A. Egolf, J. S. Urbach. Forcing and Velocity Correlations in a Vibrated Granular Monolayer. Phys. Rev. Lett., 89 (2002), No. 8, 084301.
- A. Puglisi, V. Loreto, U. M. B. Marconi, A. Vulpiani. Kinetic approach to granular gases. Phys. Rev E, 59 (1999), No. 5, 5582–5595.
- P. Résibois, M. de Leener. Classical Kinetic Theory of Fluids. Wiley, New York, 1977. Zbl0152.46503
- N. G. van Kampen. Stochastic Proccesses in Physics and Chemistry. North-Holland, Amsterdam, 1992.
- T. P. C. van Noije, M. H. Ernst. Velocity distributions in homogeneous granular fluids: the free and the heated case. Granular Matter, 1 (1998), No. 2, 57–64.
- T. P. C. van Noije, M. H. Ernst, E. Trizac, I. Pagonabarraga. Randomly driven granular fluids: Large-scale structure. Phys. Rev. E, 59 (1999), No. 4, 4326–4341.
- P. Visco, A. Puglisi, A. Barrat, F. van Wijland, E. Trizac. Energy fluctuations in vibrated and driven granular gases. Eur. Phys. J. B, 51 (2006), No. 3, 377–387. Zbl1107.82369
- D. R. M. Williams, F. C. MacKintosh. Driven granular media in one dimension: Correlations and equation of state. Phys. Rev. E, 54 (1996), No. 1, R9–R12.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.