Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating

M. Khenner; S. Yadavali; R. Kalyanaraman

Mathematical Modelling of Natural Phenomena (2012)

  • Volume: 7, Issue: 4, page 20-38
  • ISSN: 0973-5348

Abstract

top
The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady-state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.

How to cite

top

Khenner, M., Yadavali, S., and Kalyanaraman, R.. "Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating." Mathematical Modelling of Natural Phenomena 7.4 (2012): 20-38. <http://eudml.org/doc/222378>.

@article{Khenner2012,
abstract = {The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady-state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.},
author = {Khenner, M., Yadavali, S., Kalyanaraman, R.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {liquid bilayer films; thermocapillary convection; interfacial stability; pulsed laser irradiation; dewetting; self-organization; nanopatterning},
language = {eng},
month = {7},
number = {4},
pages = {20-38},
publisher = {EDP Sciences},
title = {Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating},
url = {http://eudml.org/doc/222378},
volume = {7},
year = {2012},
}

TY - JOUR
AU - Khenner, M.
AU - Yadavali, S.
AU - Kalyanaraman, R.
TI - Controlling Nanoparticles Formation in Molten Metallic Bilayers by Pulsed-Laser Interference Heating
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/7//
PB - EDP Sciences
VL - 7
IS - 4
SP - 20
EP - 38
AB - The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady-state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.
LA - eng
KW - liquid bilayer films; thermocapillary convection; interfacial stability; pulsed laser irradiation; dewetting; self-organization; nanopatterning
UR - http://eudml.org/doc/222378
ER -

References

top
  1. A. Vrij, J. Th. G. Overbeek. Rupture of Thin Liquid Films Due to Spontaneous Fluctuations in Thickness. J. Am. Chem. Soc., 90 (1968), 3074-3078.  
  2. G. Reiter. Dewetting of thin polymer films. Phys. Rev. Lett., 68 (1992), 75-78.  
  3. A. Sharma, R. Khanna. Pattern Formation in Unstable Thin Liquid Films. Phys. Rev. Lett., 81 (1998), 3463-3466.  
  4. R.M. Bradley, J.M.E. Harper. Theory of ripple topography induced by ion bombardment. J. Vac. Sci. Tech. A, 6 (1988), 2390-2395.  
  5. E. Chason, T.M. Mayer, B.K. Kellerman, D.T. Mcllroy, A.J. Howard. Roughening instability and evolution of the Ge(001) surface during ion sputtering. Phys. Rev. Lett., 72 (1994), 3040-3043.  
  6. J. Bischof, D. Scherer, S. Herminghaus, P. Leiderer. Dewetting Modes of Thin Metallic Films : Nucleation of Holes and Spinodal Dewetting. Phys. Rev. Lett., 77 (1996), 1536-1539.  
  7. S.J. Henley, J.D. Carey, S.R.P. Silva. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films. Phys. Rev. B, 72 (2005), 195408-18.  
  8. J. Trice, D. Thomas, C. Favazza, R. R. Sureshkumar, R. Kalyanaraman. Investigation of pulsed laser induced dewetting in nanoscopic metal films. Phys. Rev. B, 75 (2007), 235439-54.  
  9. C. Zhang, R. Kalyanaraman. In-situ nanostructured film formation during physical vapor deposition. Appl. Phys. Lett., 83 (2003), 4827-4829.  
  10. C. Favazza, J. Trice, A.K. Gangopadhyay, H. Garcia, R. Sureshkumar, R. Kalyanaraman. Nanoparticle ordering by dewetting of Co on SiO2. J. Electron. Mater., 35 (2006), 1618-1620.  
  11. C. Favazza, R. Kalyanaraman, R. Sureshkumar. Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology, 17 (2006), 4229-4234.  
  12. J. Trice, C. Favazza, D. Thomas, H. Garcia, R. Kalyanaraman, R. R. Sureshkumar. Novel self-organization mechanism in ultrathin liquid films : theory and experiment. Phys. Rev. Lett., 101 (2008), 017802-6.  
  13. H. Krishna, R. Sachan, J. Strader, C. Favazza, M. Khenner, R. Kalyanaraman. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology, 21 (2010), 155601-8.  
  14. L. Longstreth-Spoor, J. Trice, H. Garcia, C. Zhang, R. Kalyanaraman. Nanostructure and microstructure of laser-interference-induced dynamic patterning of Co on Si. J. Phys. D : Appl. Phys., 39 (2006), 5149-5159.  
  15. C. Favazza, J. Trice, R. Kalyanaraman, R. Sureshkumar. Self-organized metal nanostructures through laser-interference driven thermocapillary convection. Appl. Phys. Lett., 91 (2007), 043105-7.  
  16. H. Krishna, N. Shirato, S. Yadavali, R. Sachan, J. Strader, R. Kalyanaraman. Self-organization of nanoscale multilayer liquid metal films : Experiment and theory. ACS Nano, 5 (2011), 470-476.  
  17. F. Brochard-Wyart, P. Martin, C. Redon. Liquid/liquid dewetting. Langmuir, 9 (1993), 3682-3690.  
  18. P. Lambooy, K.C. Phelan, O. Haugg, G. Krausch. Dewetting at the Liquid-Liquid Interface. Phys. Rev. Lett., 76 (1996), 1110-1113.  
  19. M. Sferrazza, M. Heppenstall-Butler, R. Cubitt, D. Bucknall, J. Webster, R. A. L. Jones. Interfacial Instability Driven by Dispersive Forces : The Early Stages of Spinodal Dewetting of a Thin Polymer Film on a Polymer Substrate. Phys. Rev. Lett., 81 (1998), 5173-5176.  
  20. M.O. David, G. Reiter, T. Sitthai, J. Schultz. Deformation of a Glassy Polymer Film by Long-Range Intermolecular Forces. Langmuir, 14 (1998), 5667-5672.  
  21. R.A. Segalman, P.F. Green. Dynamics of Rims and the Onset of Spinodal Dewetting at Liquid/Liquid Interfaces. Macromolecules, 32 (1999), 801-807.  
  22. C. Wang, G. Krausch, M. Geoghegan. Dewetting at a Polymer-Polymer Interface : Film Thickness Dependence. Langmuir, 17 (2001), 6269-6274.  
  23. J.P. de Silva, M. Geoghegan, A.M. Higgins, G. Krausch, M.O. David, G. Reiter. Switching Layer Stability in a Polymer Bilayer by Thickness Variation. Phys. Rev. Lett., 98 (2007), 267802-5.  
  24. L. Xu, T. Shi, L. An. The competition between the liquid-liquid dewetting and the liquid-solid dewetting. J. Chem. Phys., 130 (2009), 184903-10.  
  25. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele. Alternative pathways of dewetting for a thin liquid two-layer film. Phys. Rev. E, 70 (2004), 025201-4.  
  26. A. Pototsky, M. Bestehorn, D. Merkt. Morphology changes in the evolution of liquid two-layer films. J. Chem. Phys., 122 (2005), 224711-23.  
  27. D. Bandyopadhyay, R. Gulabani, A. Sharma. Instability and dynamics of thin liquid bilayers. Ind. Eng. Chem. Res., 44 (2005), 1259-1272.  
  28. L.S. Fisher, A.A. Golovin. Nonlinear stability analysis of a two-layer thin liquid film : Dewetting and authophobic behavior. J. Colloid Interface Science, 291 (2005), 515-528.  
  29. D. Merkt, A. Pototsky, M. Bestehorn, U. Thiele. Long-wave theory of bounded two-layer films with a free liquid-liquid interface : Short- and long-time evolution. Phys. Fluids, 17 (2005), 064104-23.  
  30. A. Pototsky, M. Bestehorn, D. Merkt, U. Thiele. Evolution of interface patterns of three-dimensional two-layer liquid films. Europhys. Lett., 74 (2006), 665-671.  
  31. D. Bandyopadhyay, A. Sharma. Nonlinear instabilities and pathways of rupture in thin liquid bilayers. J. Chem. Phys., 125 (2006), 054711-13.  
  32. A.A. Nepomnyashchy, I. B. Simanovskii. Decomposition of a two-layer thin liquid film flowing under the action of Marangoni stresses. Phys. Fluids, 18 (2006), 112101-11.  
  33. A.A. Nepomnyashchy, I.B. Simanovskii. Marangoni instability in ultrathin two-layer films. Phys. Fluids, 19 (2007), 122103-14.  
  34. A.A. Nepomnyashchy, I.B. Simanovskii. The Influence of Gravity on the Dynamics of Non-Isothermic Ultra-Thin Two-Layer Films. Microgravity Sci. Technol., 21 (2009), S261-S269.  
  35. B.B. Yellen, O. Hovorka, G. Friedman. Arranging matter by magnetic nanoparticle assemblers. Proc. Nat. Acad. Sci., 102 (2005), 8860-8864.  
  36. M.A.M. Gijs. Magnetic bead handling on-chip : new opportunities for analytical applications. Microfluidics and Nanofluidics, 1 (2004), 22-40.  
  37. Y.M. Hao, M. Chen, Z.B. Hu. Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mat., 184 (2010), 392-399.  
  38. J. Wang, L.Y. Wang, Y. Sun, X.N. Zhu, H.Y. Xu, N. Bi, H.Q. Zhang, Y.B. Cao, X.H. Wang, D.Q. Song. Preparation of core/shell Fe3O4/Au nanocomposite and its application to surface plasmon resonance biosensor. Acta Chimica Sinica, 68 (2010), 263-268.  
  39. B. Sepúlveda, A. Calle, L.M. Lechuga, G. Armelles. Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor. Opt. Lett., 31 (2006), 1085-1087.  
  40. D.M. Newman, R.J. Matelon, M.L. Wears, L.B. Savage. The In Vivo Diagnosis of Malaria : Feasibility Study Into a Magneto-Optic Fingertip Probe. IEEE J. Sel Top. Quant. Elec., 16 (2010), 573-580.  
  41. R. Bahuguna, M. Mina, R.J. Weber. Mach-Zehnder interferometric switch utilizing Faraday rotation. IEEE Trans. Mag., 43 (2007), 2680-2682.  
  42. L. Eldada. Optical communication components. Rev. Sci. Instrum., 75 (2004), 575-593.  
  43. K. Yang, C. Clavero, J. R. Skuza, M. Varela, R. A. Lukaszew. Surface plasmon resonance and magneto-optical enhancement on Au–Co nanocomposite thin films. J. Appl. Phys., 107 (2010), 103924-5.  
  44. P.K. Jain, Y. Xiao, R. Walsworth, A.E. Cohen. Surface Plasmon Resonance Enhanced Magneto-Optics (SuPREMO) : Faraday Rotation Enhancement in Gold-Coated Iron Oxide Nanocrystals. Nano Lett., 9 (2009), 1644-1650.  
  45. N. Pazos-Perez, Y. Gao, M. Hilgendorff, S. Irsen, J. Pereez-Juste, M. Spasova, M. Farle, L.M. Liz-Marzan, M. Giersig. Magnetic-noble metal nanocomposites with morphology-dependent optical response. Chem. Mat., 19 (2007), 4415-4422.  
  46. V.S. Ajaev, D.A. Willis. Thermocapillary flow and rupture in films of molten metal on a substrate. Phys. Fluids, 15 (2003), 3144-7; Heat transfer, phase change, and thermocapillary flow in films of molten metal on a substrate. Numer. Heat Transfer, Part A, 50 (2006), 301-313.  
  47. A.S. Basu, Y.B. Gianchandani. Shaping high-speed Marangoni flow in liquid films by microscale perturbations in surface temperature. Appl. Phys. Lett., 90 (2007), 034102-3.  
  48. F.J. Higuera. Steady thermocapillary-buoyant flow in an unbounded liquid layer heated nonuniformly from above. Phys. Fluids, 12 (2000), 2186-12.  
  49. A. Oron, Y. Peles. Stabilization of thin liquid films by internal heat generation. Phys. Fluids, 10 (1998), 537-3.  
  50. A. Oron. Nonlinear dynamics of irradiated thin volatile liquid films. Phys. Fluids, 12 (2000), 29-13.  
  51. R.O. Grigoriev. Control of evaporatively driven instabilities of thin liquid films. Phys. Fluids, 14 (2002), 1895-15.  
  52. L. Kondic, J.A. Diez, Philip D. Rack, Yingfeng Guan, Jason D. Fowlkes. Nanoparticle assembly via the dewetting of patterned thin metal lines : Understanding the instability mechanisms. Phys. Rev. E, 79 (2009), 026302-7.  
  53. Y. Wu, J. D. Fowlkes, P. D. Rack, J. A. Diez, L. Kondic. On the Breakup of Patterned Nanoscale Copper Rings into Droplets via Pulsed-Laser-Induced Dewetting : Competing Liquid-Phase Instability and Transport Mechanisms. Langmuir, 26 (2010), 11972-11979.  
  54. Y. Wu, J. D. Fowlkes, N. A. Roberts, J. A. Diez, L. Kondic, A. G. Gonzalez, P. D. Rack. Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered nanoparticle arrays on SiO2. Langmuir, 27 (2011), 13314-13323.  
  55. H. Krishna, N. Shirato, C. Favazza, R. Kalyanaraman. Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys., 11 (2009), 8136-8143.  
  56. A. Atena, M. Khenner. Thermocapillary effects in driven dewetting and self-assembly of pulsed-laser-irradiated metallic films. Phys. Rev. B, 80 (2009), 075402-11.  
  57. A. Oron, S.H. Davis, S.G. Bankoff. Long scale evolution of thin liquid films. Rev. Mod. Phys., 69 (1997), 931-980.  
  58. M. Khenner, S. Yadavali, R. Kalyanaraman. Formation of organized nanostructures from unstable bilayers of thin metallic liquids, Phys. Fluids, 23 (2011), 122105-14.  
  59. C. Favazza, R. Kalyanaraman, R. Sureshkumar. Dynamics of ultrathin metal films on amorphous substrates under fast thermal processing. J. Appl. Phys., 102 (2007), 104308-6.  
  60. B.V. Derjaguin, L.F. Leonov, V.I. Roldughin. Disjoining pressure in liquid metallic films. J. Colloid Interface Sci., 108 (1985), 207-214; also in : Prog. Surf. Sci. 40 (1992), 232-239.  
  61. S. Yadavali, R. Kalyanaraman. Morphology transitions in ternary dewetting systems. Submitted.  
  62. S. Yadavali, R. Kalyanaraman. Thermal modeling for multilayer thin films using pulsed laser induced dewetting. In preparation.  
  63. J.S.C. Prentice. Coherent, partially coherent and incoherent light absorption in thin-film multilayer structures. J. Phys. D : Appl. Phys., 33 (2000), 3139-3145.  
  64. S.H. Davis. On the principle of exchange of stabilities. Proc. Roy. Soc. Ser. A, 310 (1969), 341-358.  
  65. V.M. Starov, M.G. Velarde, C.J. Radke. Wetting and Spreading Dynamics. CRC, Boca Raton, 2007.  
  66. J. Israelachvili. Intermolecular and Surface Forces. Academic, London, 1991.  
  67. E. Hairer, G. Wanner. Stiff differential equations solved by Radau method. J. Comput. Appl. Math., 111 (1999), 93-111.  
  68. P. N. Brown, G. D. Byrne, A. C. Hindmarsh. VODE : A variable coefficient ODE solver. SIAM J. Sci. Stat. Comput., 10 (1989), 1038-1051.  
  69. M.H. Ward. Interfacial thin films rupture and self-similarity. Phys. Fluids, 23 (2011), 062105-14.  
  70. K. Glasner, T. Witelski. Coarsening dynamics of dewetting films. Phys. Rev. E, 67 (2003), 016302-12.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.