Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion
K. Böttger; H. Hatzikirou; A. Chauviere; A. Deutsch
Mathematical Modelling of Natural Phenomena (2012)
- Volume: 7, Issue: 1, page 105-135
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topBöttger, K., et al. "Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion." Mathematical Modelling of Natural Phenomena 7.1 (2012): 105-135. <http://eudml.org/doc/222384>.
@article{Böttger2012,
abstract = {Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneous
cell proliferation and motility rates. The interplay of proliferation and migration
dynamics plays an important role in the invasion of these malignant tumors. We analyze the
regulation of proliferation and migration processes with a lattice-gas cellular automaton
(LGCA). We study and characterize the influence of the migration/proliferation dichotomy
(also known as the “GO-or-Grow" mechanism) on avascular glioma invasion, in terms of
invasion speed and width of the infiltration zone. We show that the invasive behavior of
the (macroscopic) tumor colony is a highly complex phenomenon that cannot be extrapolated
by the sole knowledge of the (microscopic) individual cell phenotype.},
author = {Böttger, K., Hatzikirou, H., Chauviere, A., Deutsch, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {avascular glioma invasion; cell migration; proliferation; Go-or-Grow; LGCA; cell migration/proliferation},
language = {eng},
month = {1},
number = {1},
pages = {105-135},
publisher = {EDP Sciences},
title = {Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion},
url = {http://eudml.org/doc/222384},
volume = {7},
year = {2012},
}
TY - JOUR
AU - Böttger, K.
AU - Hatzikirou, H.
AU - Chauviere, A.
AU - Deutsch, A.
TI - Investigation of the Migration/Proliferation Dichotomy and its Impact on Avascular Glioma Invasion
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/1//
PB - EDP Sciences
VL - 7
IS - 1
SP - 105
EP - 135
AB - Gliomas are highly invasive brain tumors that exhibit high and spatially heterogeneous
cell proliferation and motility rates. The interplay of proliferation and migration
dynamics plays an important role in the invasion of these malignant tumors. We analyze the
regulation of proliferation and migration processes with a lattice-gas cellular automaton
(LGCA). We study and characterize the influence of the migration/proliferation dichotomy
(also known as the “GO-or-Grow" mechanism) on avascular glioma invasion, in terms of
invasion speed and width of the infiltration zone. We show that the invasive behavior of
the (macroscopic) tumor colony is a highly complex phenomenon that cannot be extrapolated
by the sole knowledge of the (microscopic) individual cell phenotype.
LA - eng
KW - avascular glioma invasion; cell migration; proliferation; Go-or-Grow; LGCA; cell migration/proliferation
UR - http://eudml.org/doc/222384
ER -
References
top- C. Athale, Y. Mansury, T. Deisboeck. Simulating the impact of a molecular ‘decision-process’ on cellular phenotype and multicellular patterns in brain tumors. J. Theor. Biol., 233 (2005), 469–481.
- J.P. Boon, D. Dab, R. Kapral, A. Lawniczak. Lattice gas automata for reactive systems. Phys. Rpts., 273 (1996), 55–147.
- B.M. Caradoc-Davies. Vortex Dynamics in Bose-Einstein Condensates. Ph.D. dissertation, University of Otago, Dunedin, New Zealand (2000).
- B. Chopard, M. Droz. Cellular Automata Modeling of Physical Systems. Cambridge University Press (1998).
- A. Deutsch, S. Dormann. Cellular automaton modeling of biological pattern formation. Birkhäuser (2005).
- S. Fedotov, A. Iomin. Migration and Proliferation Dichotomy in Tumor-Cell Invasion. Phys. Rev. Let., 98 (2007), 118101–4.
- C.W. Gardiner. Handbook of stochastic methods. Springer, Berlin (1990).
- A. Giese, M.A. Loo, N. Tran, D. Haskett, S.W. Coons, M.E. Berens. Dichotomy of astrocytoma migration and proliferation. Int. J. Cancer, 67 (1996), 275–282.
- A. Giese, R. Bjerkvig, M.E. Berens, M. Westphal. Cost of Migration : Invasion of Malignant Gliomas and Implications for Treatment. J. Clin. Onc., 21 (8) (2003), 1624–1636.
- J. Godlewski, M. Nowicki, A. Bronisz, G. Nuovo, J. Palatini, M. De Lay, J. Van Brocklyn, M. Ostrowski, E. A. Chiocca, S. E. Lawler. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell, 37 (2010), 620–32.
- H.L.P. Harpold, E.C. AlvordJr, K.R. Swanson. The evolution of mathematical modeling of glioma proliferation and invasion. J. Neuropathol. Exp. Neurol., 66 (1) (2007), 1–9.
- H. Hatzikirou, D. Basanta, M. Simon, C. Schaller, A. Deutsch. ‘Go or Grow’ : the key to the emergence of invasion in tumor progression ? Mathematical Medicine and Biology (Published online July 2010), doi :. URI10.1093/imammb/dqq01
- H. Hatzikirou, L. Brusch, A. Deutsch. From cellular automaton rules to an effective macroscopic mean-field description. Acta Phys. Pol. B Proc., 3 (2010), 399–416.
- H. Hatzikirou, L. Brusch, C. Schaller, M. Simon, A. Deutsch. Prediction of traveling front behavior in a lattice-gas cellular automaton model for tumor invasion. Comput. Math. Appl., 59 (2010), 2326–2339.
- M.A. Lewis, G. Schmitz. Biological invasion of an organism with separate mobile and stationary states : Modeling and analysis. Forma, 11 (1996), 1–25.
- Y. Mansury, M. Diggory, T. Deisboeck. Evolutionary game theory in an agent-based brain tumor model : Exploring the ’Genotype-Phenotype’ link. J. Theor. Biol., 238 (2006), 146–156.
- K. Pham, A. Chauviere, H. Hatzikirou, X. Li, H. M. Byrne, V. Cristini, J. Lowengrub. Density-dependent quiescence in glioma invasion : instability in a simple reaction-diffusion model for the migration/proliferation dichotomy. J. Biol. Dyn. (Published online June 2011), doi :. URI10.1080/17513758.2011.590610
- R.E. Baker, M.J. Simpson. Simulating invasion with cellular automata : connecting cell-scale and population-scale properties. Phys. Rev. E, 76 (2) (2007), 021918.
- A.M. Stein, M. O. Nowicki, T. Demuth, M.E. Berens, S.E. Lawler, E.A. Chiocca, L.M. Sander. Estimating the cell density and invasive radius of 3d glioblastoma tumor spheroids grown in vitro. Appl. Optics, 46 (22) (2007), 5110–5118.
- A.M. Stein, T. Demuth, D. Mobley, M. Berens, L.K. Sander. A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment. Biophys. J., 92 (1) (2007), 356–365.
- D. Stockholm, R. Benchaouir, J. Picot, P. Rameau, T.M.A. Neildez, G. Landini, C. Laplace-Builhe, A. Paldi. The origin of phenotypic heterogeneity in a clonal cell population in vitro. PLoS ONE, 4 (2007), 1–13.
- M. Tektonidis, H. Hatzikirou, A. Chauviere, M. Simmon, K. Schaller, A. Deutsch. Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J. Theor. Biol., 287 (2011), 131–147.
- C.H. Wang, J.K. Rockhill, M. Mrugala, D.L. Peacock, A. Lai, K. Jusenius, J.M. Wardlaw, T. Cloughesy, A.M. Spence, R. Rockne, et al.Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model. Cancer Res., 69 (23) (2009), 9133–9140.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.