A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation
J. Haslinger; R. Kučera; T. Sassi
Mathematical Modelling of Natural Phenomena (2009)
- Volume: 4, Issue: 1, page 123-146
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topHaslinger, J., Kučera, R., and Sassi, T.. "A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation." Mathematical Modelling of Natural Phenomena 4.1 (2009): 123-146. <http://eudml.org/doc/222400>.
@article{Haslinger2009,
abstract = {
The paper deals with an iterative method for numerical solving frictionless
contact problems for two elastic bodies. Each iterative step consists of a
Dirichlet problem for the one body, a contact problem for the other one and two
Neumann problems to coordinate contact stresses. Convergence is proved by the
Banach fixed point theorem in both continuous and discrete case. Numerical
experiments indicate scalability of the algorithm for some choices of the
relaxation parameter.},
author = {Haslinger, J., Kučera, R., Sassi, T.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {contact problem; domain decomposition method},
language = {eng},
month = {1},
number = {1},
pages = {123-146},
publisher = {EDP Sciences},
title = {A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation},
url = {http://eudml.org/doc/222400},
volume = {4},
year = {2009},
}
TY - JOUR
AU - Haslinger, J.
AU - Kučera, R.
AU - Sassi, T.
TI - A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation
JO - Mathematical Modelling of Natural Phenomena
DA - 2009/1//
PB - EDP Sciences
VL - 4
IS - 1
SP - 123
EP - 146
AB -
The paper deals with an iterative method for numerical solving frictionless
contact problems for two elastic bodies. Each iterative step consists of a
Dirichlet problem for the one body, a contact problem for the other one and two
Neumann problems to coordinate contact stresses. Convergence is proved by the
Banach fixed point theorem in both continuous and discrete case. Numerical
experiments indicate scalability of the algorithm for some choices of the
relaxation parameter.
LA - eng
KW - contact problem; domain decomposition method
UR - http://eudml.org/doc/222400
ER -
References
top- L. Baillet, T. Sassi. Simulations numériques de différentes méthodes d'éments finis pour les problémes contact avec frottement. C. R. Acad. Sci, Paris, Ser. IIB, 331 (2003),789–796.
- G. Bayada, J. Sabil, T. Sassi. Algorithme de décomposition de domaine pour un probléme de Signorini sans frottement. C. R. Acad. Sci. Paris, Ser. I335 (2002), 381–386.
- G. Bayada, J. Sabil, T. Sassi. A Neumann-Neumann domain decomposition algorithm for the Signorini problem. Appl. Math. Letters, 17 (2004), 1153–1159.
- P. E. Bjorstad, O. B. Widlund. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numerical Analysis, 23 (1986), No. 6, 1097–1120.
- P. W. Christensen, A. Klarbring, J. S. Pang, N. Strömberg. Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg., 42 (1998), No. 1, 145–173.
- Z. Dostál, J. Schöberl. Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Comput. Optim. Appl., 30 (2005), No. 1, 23–44.
- C. Eck, B. Wohlmuth. Convergence of a Contact-Neumann iteration for the solution of two-body contact problems. Mathematical Models and Methods in Applied Sciences, 13 (2003), No. 8, 1103-1118.
- R. Glowinski, J. L. Lions, R. Trémoliére. Numerical analysis of variational inequalities. Studies in Mathematics and its Applications, Volume VIII, North-Holland, Amsterdam, 1981.
- G. H. Golub, C. F. Van Loan. Matrix computation. The Johns Hopkins University Press, Baltimore, 1996.
- J. Haslinger, Z. Dostál, R. Kučera. On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg., 191 (2002), No. 21-22, 2261–2281.
- J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, Volume IV, Part 2, North Holland, Amsterdam, 1996.
- M. A. Ipopa. Algorithmes de Décomposition de Domaine pour les problémes de Contact: Convergence et simulations numériques. Thesis, Université de Caen, 2008.
- N. Kikuchi, J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.
- R. Kornhuber, R. Krause. Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci., 4 (2001), No. 1, 9–20.,
- R. Krause, B. Wohlmuth. A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci., 5 (2002), No. 3, 139–148.
- P. Le Tallec. Domain decomposition methods in computational mechanics. Comput. Mech. Adv., 1 (1994), No. 2, 121–220.
- J. Sabil. Modélisation et méthodes de décomposition de domaine pour des problémes de contact. Thesis, INSA de Lyon, 2004.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.