A Domain Decomposition Algorithm for Contact Problems: Analysis and Implementation
J. Haslinger; R. Kučera; T. Sassi
Mathematical Modelling of Natural Phenomena (2009)
- Volume: 4, Issue: 1, page 123-146
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- L. Baillet, T. Sassi. Simulations numériques de différentes méthodes d'éments finis pour les problémes contact avec frottement. C. R. Acad. Sci, Paris, Ser. IIB, 331 (2003),789–796.
- G. Bayada, J. Sabil, T. Sassi. Algorithme de décomposition de domaine pour un probléme de Signorini sans frottement. C. R. Acad. Sci. Paris, Ser. I335 (2002), 381–386.
- G. Bayada, J. Sabil, T. Sassi. A Neumann-Neumann domain decomposition algorithm for the Signorini problem. Appl. Math. Letters, 17 (2004), 1153–1159.
- P. E. Bjorstad, O. B. Widlund. Iterative methods for the solution of elliptic problems on regions partitioned into substructures. SIAM J. Numerical Analysis, 23 (1986), No. 6, 1097–1120.
- P. W. Christensen, A. Klarbring, J. S. Pang, N. Strömberg. Formulation and comparison of algorithms for frictional contact problems. Internat. J. Numer. Methods Engrg., 42 (1998), No. 1, 145–173.
- Z. Dostál, J. Schöberl. Minimizing quadratic functions over non-negative cone with the rate of convergence and finite termination. Comput. Optim. Appl., 30 (2005), No. 1, 23–44.
- C. Eck, B. Wohlmuth. Convergence of a Contact-Neumann iteration for the solution of two-body contact problems. Mathematical Models and Methods in Applied Sciences, 13 (2003), No. 8, 1103-1118.
- R. Glowinski, J. L. Lions, R. Trémoliére. Numerical analysis of variational inequalities. Studies in Mathematics and its Applications, Volume VIII, North-Holland, Amsterdam, 1981.
- G. H. Golub, C. F. Van Loan. Matrix computation. The Johns Hopkins University Press, Baltimore, 1996.
- J. Haslinger, Z. Dostál, R. Kučera. On a splitting type algorithm for the numerical realization of contact problems with Coulomb friction. Comput. Methods Appl. Mech. Engrg., 191 (2002), No. 21-22, 2261–2281.
- J. Haslinger, I. Hlaváček, J. Nečas. Numerical methods for unilateral problems in solid mechanics. Handbook of Numerical Analysis, Volume IV, Part 2, North Holland, Amsterdam, 1996.
- M. A. Ipopa. Algorithmes de Décomposition de Domaine pour les problémes de Contact: Convergence et simulations numériques. Thesis, Université de Caen, 2008.
- N. Kikuchi, J. T. Oden. Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM, Philadelphia, 1988.
- R. Kornhuber, R. Krause. Adaptive multigrid methods for Signorini's problem in linear elasticity. Comput. Vis. Sci., 4 (2001), No. 1, 9–20.,
- R. Krause, B. Wohlmuth. A Dirichlet-Neumann type algorithm for contact problems with friction. Comput. Vis. Sci., 5 (2002), No. 3, 139–148.
- P. Le Tallec. Domain decomposition methods in computational mechanics. Comput. Mech. Adv., 1 (1994), No. 2, 121–220.
- J. Sabil. Modélisation et méthodes de décomposition de domaine pour des problémes de contact. Thesis, INSA de Lyon, 2004.