Homogeneous Cooling with Repulsive and Attractive Long-Range Potentials

M. K. Müller; S. Luding

Mathematical Modelling of Natural Phenomena (2011)

  • Volume: 6, Issue: 4, page 118-150
  • ISSN: 0973-5348

Abstract

top
The interplay between dissipation and long-range repulsive/attractive forces in homogeneous, dilute, mono-disperse particle systems is studied. The pseudo-Liouville operator formalism, originally introduced for hard-sphere interactions, is modified such that it provides very good predictions for systems with weak long-range forces at low densities, with the ratio of potential to fluctuation kinetic energy as control parameter. By numerical simulations, the theoretical results are generalized with empirical, density dependent correction-functions up to moderate densities.The main result of this study on dissipative cooling is an analytical prediction for the reduced cooling rate due to repulsive forces and for the increased rate due to attractive forces. In the latter case, surprisingly, for intermediate densities, similar cooling behavior is observed as in systems without long-range interactions. In the attractive case, in general, dissipation leads to inhomogeneities earlier and faster than in the repulsive case.

How to cite

top

Müller, M. K., and Luding, S.. "Homogeneous Cooling with Repulsive and Attractive Long-Range Potentials." Mathematical Modelling of Natural Phenomena 6.4 (2011): 118-150. <http://eudml.org/doc/222401>.

@article{Müller2011,
abstract = {The interplay between dissipation and long-range repulsive/attractive forces in homogeneous, dilute, mono-disperse particle systems is studied. The pseudo-Liouville operator formalism, originally introduced for hard-sphere interactions, is modified such that it provides very good predictions for systems with weak long-range forces at low densities, with the ratio of potential to fluctuation kinetic energy as control parameter. By numerical simulations, the theoretical results are generalized with empirical, density dependent correction-functions up to moderate densities.The main result of this study on dissipative cooling is an analytical prediction for the reduced cooling rate due to repulsive forces and for the increased rate due to attractive forces. In the latter case, surprisingly, for intermediate densities, similar cooling behavior is observed as in systems without long-range interactions. In the attractive case, in general, dissipation leads to inhomogeneities earlier and faster than in the repulsive case.},
author = {Müller, M. K., Luding, S.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {granular gas; hydrodynamics; long-range forces; numerical simulations},
language = {eng},
month = {7},
number = {4},
pages = {118-150},
publisher = {EDP Sciences},
title = {Homogeneous Cooling with Repulsive and Attractive Long-Range Potentials},
url = {http://eudml.org/doc/222401},
volume = {6},
year = {2011},
}

TY - JOUR
AU - Müller, M. K.
AU - Luding, S.
TI - Homogeneous Cooling with Repulsive and Attractive Long-Range Potentials
JO - Mathematical Modelling of Natural Phenomena
DA - 2011/7//
PB - EDP Sciences
VL - 6
IS - 4
SP - 118
EP - 150
AB - The interplay between dissipation and long-range repulsive/attractive forces in homogeneous, dilute, mono-disperse particle systems is studied. The pseudo-Liouville operator formalism, originally introduced for hard-sphere interactions, is modified such that it provides very good predictions for systems with weak long-range forces at low densities, with the ratio of potential to fluctuation kinetic energy as control parameter. By numerical simulations, the theoretical results are generalized with empirical, density dependent correction-functions up to moderate densities.The main result of this study on dissipative cooling is an analytical prediction for the reduced cooling rate due to repulsive forces and for the increased rate due to attractive forces. In the latter case, surprisingly, for intermediate densities, similar cooling behavior is observed as in systems without long-range interactions. In the attractive case, in general, dissipation leads to inhomogeneities earlier and faster than in the repulsive case.
LA - eng
KW - granular gas; hydrodynamics; long-range forces; numerical simulations
UR - http://eudml.org/doc/222401
ER -

References

top
  1. M. P. Allen, D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, Oxford, 1987.  
  2. J. C. Almekinders, C. Jones. Multiple jet electrohydrodynamic spraying and applications. J. Aerosol Sci., 30 (1999), 969–971.  
  3. J. Barnes, P. Hut. A hierarchical O(NlogN) force calculation algorithm. Nature, 324 (1986), 446–449.  
  4. D. L. Blair, A. Kudrolli. Magnetized granular materials. In H. Hinrichsen and D. Wolf, editors, The Physics of Granular Media., pages 281–296, Weinheim, 2004. Wiley-VCH.  
  5. J. Blum, S. Bruns, D. Rademacher, A. Voss, B. Willenberg, M. Krause. Measurement of the translational and rotational Brownian motion of individual particles in a rarefied gas. Phys. Rev. Lett., 97 (2006), 230601.  
  6. J. Blum, G. Wurm, S. Kempf, T. Poppe, H. Klahr, T. Kozasa, M. Rott, T. Henning, J. Dorschner, R. Schräpler, H.U. Keller, W.J. Markiewicz, I. Mann, B.A.S. Gustafson, F. Giovane, D. Neuhaus, H. Fechtig, E. Grün, B. Feuerbacher, H. Kochan, L. Ratke, A. El Goresy, G. Morfill, S.J. Weidenschilling, G. Schwehm, K. Metzler, W.-H. Ip. Growth and form of planetary seedlings: Results from a microgravity aggregation experiment. Phys. Rev. Lett., 85 (2000), 2426–2429.  
  7. P. Bode, J. P. Ostriker. Tree particle-mesh: An adaptive, efficient, and parallel code of collisionless cosmological simulation. Astrophys. J. Supplem. Series, 145 (2003), No. 1, 1–13.  
  8. A. Brahic. Systems of colliding bodies in a gravitational field: I - numerical simulation of the standard model. Astronomy and Astrophysics, 54 (1977), 895–907.  
  9. F. G. Bridges, A. Hatzes, D. N. C. Lin. Structure, stability and evolution of Saturn’s rings. Nature, 309 (1984), 333–335.  
  10. N. V. Brilliantov, T. Pöschel. Deviation from maxwell distribution in granular gases with constant restitution coefficient. Phys. Rev. E, 61 (2000), 2809–2814.  
  11. N. V. Brilliantov, T. Pöschel. Kinetic Theory of Granular Gases. Oxford University Press, Oxford, 2004.  
  12. N. V. Brilliantov, C. Saluena, T. Schwager, T. Pöschel. Transient structures in a granular gas. Phys. Rev. Let., 93 (2004), No. 13, 134301.  
  13. N. V. Brilliantov, F. Spahn, J.-M. Hertzsch, T. Pöschel. A model for collisions in granular gases. Phys. Rev. E, 53 (1996), 5382–5392.  
  14. N. F. Carnahan, K. E. Starling. Equation of state for nonattractive rigid spheres. J. Chem. Phys., 51 (1969), No. 2, 635–636.  
  15. J. A. Cross. Electrostatics: Principles, Problems and Applications. Adam Hilger, Bristol, 1987.  
  16. S. M. Dammer, J. Werth, H. Hinrichsen. Electrostatically charged granular matter. In H. Hinrichsen D. Wolf, editors, The Physics of Granular Media., pages 255–280, Wiley-VCH, Weinheim, 2004.  
  17. S. M. Dammer, D. E. Wolf. Self-focusing dynamics in monopolarly charged suspensions. Phys. Rev. E, 93 (2004), No. 15, 150602.  
  18. J. Du. Hydrostatic equilibrium and Tsallis’ equilibrium for self-gravitating systems. Central European Journal of Physics, 3 (2005), No. 3, 376–381.  
  19. J. Duran. Sands, Powders and Grains. Springer-Verlag, New York, 2000.  
  20. J. W. Eastwood, R. W. Hockney, D. Lawrence. P3M3DP - the 3-dimensional periodic particle-particle-particle-mesh program. Comp. Phys. Commun., 19 (1980), 215–261.  
  21. M. H. Ernst. Nonlinear model-Boltzmann equations and exact solutions. Physics Reports, 78 (1981), No. 1, 1–171.  
  22. M. H. Ernst, J. R. Dorfman, W. R. Hoegy, J. M. J. van Leeuwen. Hard-sphere dynamics and binary-collision operators. Physica, 45 (1969), No. 1, 127–146.  
  23. M. H. Ernst, E. Trizac, A. Barrat. The Boltzmann equation for driven systems of inelastic soft spheres. J. Stat. Phys., 124 (2006), No. 2–4, 549–586.  
  24. P. Eshuis, K. van der Weele, D. van der Meer, D. Lohse. The granular Leidenfrost effect: Experiment and theory of floating particle clusters. Phys. Rev. E, 95 (2005), 258001.  
  25. S. E. Esipov, T. Pöschel.. The granular phase diagram. J. Stat. Phys., 86 (1997), No. 5/6, 1385–1395.  
  26. L. W. Esposito, J. N. Cuzzi, J. B. Holberg, E. A. Marouf, G. L. Tyler, C. C. Porco. Saturn’s rings, structure, dynamics and particle properties. In Saturn, pages 463–545, Tucson, AZ, Univ. of Arizona Press, 1984.  
  27. P. P. Ewald. The calculation of optical and electrostatic grid potential. Ann. d. Physik, 64 (1921), 253–287.  
  28. K. B. Geerse. Application of Electrospray: from people to plants. Ph.D. thesis, Technische Universiteit Delft, 2003.  
  29. I. Goldhirsch, G. Zanetti. Clustering instability in dissipative gases. Phys. Rev. Lett., 70 (1993), No. 11, 1619–1622.  
  30. P. Goldreich. The dynamics of planetary rings. Ann. Rev. Astron. Astrophys., 20 (1982), 249–283.  
  31. R. Greenberg, A. Brahic. Planetary Rings. Arizona University Press, Tucson, AZ, 1984.  
  32. L. Greengard, V. Rokhlin. A fast algorithm for particle simulations. J. of Comp. Phys., 73 (1987), 325–348.  
  33. P. K. Haff. Grain flow as a fluid-mechanical phenomenon. J. Fluid Mech., 134 (1983), 401–430.  
  34. J.-P. Hansen, I. R. McDonald. Theory of Simple Liquids. Academic Press Ltd., London, San Diego, 1990.  
  35. D. Henderson. A simple equation of state for hard discs. Molec. Phys., 30 (1975), No. 3, 971–972.  
  36. O. Herbst, R. Cafiero, A. Zippelius, H. J. Herrmann, S. Luding. A driven two-dimensional granular gas with coulomb friction. Phys. of Fluids, 17 (2005), No. 10, 107102.  
  37. O. Herbst, P. Müller, A. Zippelius. Local heat flux and energy loss in a two-dimensional vibrated granular gas. Phys. Rev. E, 72 (2005) No. 4, 041303.  
  38. L. Hernquist. Hierarchical N-body methods. Comp. Phys. Commun., 48 (1988), 107–115.  
  39. R. Hoffmann. Modeling and Simulation of an Electrostatic Image Transfer. (Ph.D. thesis) Shaker Verlag, Aachen, 2004.  
  40. J. S. Høye. Dynamical pair correlations of classical and quantum fluids perturbed with long-range forces. Physica A, 389 (2010), 1380–1390.  
  41. M. Huthmann, A. Zippelius. Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy. Phys. Rev. E, 56 (1997), No. 6, R6275–R6278.  
  42. W. Kleber,. A. Lang. Triboelectrically charged powder coatings generated by running through holes and slits. J. of Electrostatics, 40&41 (1997), 237–240.  
  43. M. Krause, J. Blum. Growth and form of planetary seedlings: Results from a sounding rocket microgravity aggregation experiment. Phys. Rev. Lett., 93 (2004), 021103.  
  44. C. W. J. Lemmens. An Investigation, Implementation and Comparison of 3 important Particle Simulation Techniques: PP: Particle-Particle PM: Particle-Mesh TC: Tree-Code. Report 97-46, Faculty of Technical Mathematics and Informatics, Delft, 1997.  
  45. M. Linsenbühler, J. H. Werth, S. M. Dammer, H. A. Knudsen, H. Hinrichsen, K.-E. Wirth, D. E. Wolf. Cluster size distribution of charged nanopowders in suspensions. Powder Technology, 167 (2006), No. 3, 124–133.  
  46. D. Lohse, R. Bergmann, R. Mikkelsen, C. Zeilstra, D. van der Meer, M. Versluis, K. van der Weele, M. van der Hoef, H. Kuipers. Impact on soft sand: Void collapse and jet formation. Phys. Rev. Let., 93 (2004), No. 19, 198003.  
  47. J. Lowell, A. C. Rose-Innes. Contact electrification. Adv. in Phys., 29 (1980), No. 6, 947–1023.  
  48. S. Luding. Clustering instabilities, arching, and anomalous interaction probabilities as examples for cooperative phenomena in dry granular media. T.A.S.K. Quarterly, Scientific Bulletin of Academic Computer Centre of the Technical University of Gdansk., 2 (1998), No. 3, 417–443.  
  49. S. Luding. Collisions & contacts between two particles. In H. J. Herrmann, J.-P. Hovi, S. Luding, editors, Physics of dry granular media - NATO ASI Series E350, page 285, Dordrecht, 1998. Kluwer Academic Publishers.  
  50. S. Luding. Structure and cluster formation in granular media. Pranama-J. Phys., 64 (2005), No. 6, 893–902.  
  51. S. Luding. Cohesive frictional powders: Contact models for tension. Granular Matter, 10 (2008), No. 4, 235–246.  
  52. S. Luding. Towards dense, realistic granular media in 2d. Nonlinearity, 22 (2009), R101–R146.  
  53. S. Luding, A. Goldshtein. Collisional cooling with multi-particle interactions. Granular Matter, 5 (2003), No. 3, 159–163.  
  54. S. Luding, H. J. Herrmann. Cluster growth in freely cooling granular media. Chaos, 9 (1999), No. 3, 673–681.  
  55. S. Luding, M. Huthmann, S. McNamara, A. Zippelius. Homogeneous cooling of rough, dissipative particles: Theory and simulations. Phys. Rev. E, 58 (1998), 3416–3425.  
  56. S. Luding, S. McNamara. How to handle the inelastic collapse of a dissipative hard-sphere gas with the TC model. Granular Matter, 1 (1998), No. 3, 113–128.  
  57. S. McNamara. Hydrodynamic modes of a uniform granular medium. Phys. of Fluids A, 5 (1993), 3056–3070.  
  58. S. McNamara W. R. Young. Dynamics of a freely evolving, two-dimensional granular medium. Phys. Rev. E, 53 (1996), 5089–5100.  
  59. S. Miller. Clusterbildung in Granularen Gasen. (in German). Ph.D. thesis, Universität Stuttgart, 2003.  
  60. S. Miller, S. Luding. Cluster growth in two- and three-dimensional granular gases. Phys. Rev. E, 69 (2004), No. 3, 031305.  
  61. J. M. Montanero, V. Garzò, M. Alam, S. Luding. Rheology of 2d and 3d granular mixtures under uniform shear flow: Enskog kinetic theory versus molecular dynamics simulations. Granular Matter, 8 (2006), No. 2, 103–115.  
  62. M.-K. Müller. Untersuchung von Akkretionsscheiben mit Hilfe der Molekulardynamik. (in German). Diploma thesis, Universität Stuttgart, 2001.  
  63. M.-K. Müller. Long-Range Interactions In Dilute Granular Systems. Ph.D. thesis, Universiteit Twente/Enschede, 2007.  
  64. M.-K. Müller, S. Luding. Long-range interactions in ring-shaped particle aggregates. In R. García-Rojo, H.J. Herrmann, S. McNamara, editors, Powders & Grains, pages 1119–1122, Balkema, Leiden, 2005.  
  65. M.-K. Müller, S. Luding. Homogeneous cooling with repulsive and attractive long-range interactions. In M. Nakagawa S. Luding, editors, Powders & Grains, pages 697–700, AIP Conf. Procs. #1145, 2009.  
  66. M.-K. Müller, T. Winkels, K.B. Geerse, J.C.M. Marijnissen, A. Schmidt-Ott, S. Luding. Experiment and simulation of charged particle sprays. In Proceedings PARTEC 2004, Nuremberg, 2004.  
  67. B. Muth, M.-K. Müller, P. Eberhard, S. Luding. Contacts between many bodies. In W. Kurnik, editor, Machine Dynamics Problems, pages 101–114, Warsaw, 2004.  
  68. E. Németh. Triboelektrische Aufladung von Kunststoffen. (in German). Ph.D. thesis, Technische Universität Bergakademie Freiberg, 2003.  
  69. F. Niermöller. Ladungsverteilung in Mineralgemischen und elektrostatische Sortierung nach Triboaufladung. (in German). Ph.D. thesis, Technische Universität Clausthal, 1988.  
  70. J. S. Olafsen, J. S. Urbach. Clustering, order, and collapse in a driven granular monolayer. Phys. Rev. Lett., 81 (1998), 4369.  
  71. J. A. G. Orza, R. Brito, T. P. C. van Noije, M. H. Ernst. Patterns and long range correlations in idealized granular flows. Int. J. of Mod. Phys. C, 8 (1997), No. 4, 953–965.  
  72. T. Pöschel S. Luding, editors. Granular Gases, Lecture Notes in Physics 564. Springer, Berlin, 2001.  
  73. R. Ramírez, T. Pöschel, N. V. Brilliantov, T. Schwager. Coefficient of restitution of colliding viscoelastic spheres. Phys. Rev. E, 60 (1999), 4465–4472.  
  74. F. H. Ree, W. G. Hoover. Fifth and sixth virial coefficients for hard spheres and hard disks. J. Chem. Phys., 40 (1964), No. 4, 939–950.  
  75. T. N. Scheffler. Kollisionskühlung in elektrisch geladener granularer Materie. (in German). Ph.D. thesis, Gerhard-Mercator-Universität Duisburg, 2000.  
  76. T. N. Scheffler, D. E. Wolf. Collision rates in charged granular gases. Granular Matter, 4 (2002), No. 3, 103–113.  
  77. T. Schwager, T. Pëoschel. Coefficient of restitution of viscous particles and cooling rate of granular gases. Phys. Rev. E, 57 (1998), 650–654.  
  78. F. Spahn, J. Schmidt. Saturn’s bared mini-moons. Nature, 440 (2006), 614–615.  
  79. V. Springel, S. D. M. White, A. Jenkins, C. S. Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker, D. Croton, J. Helly, J. A. Peacock, S. Cole, P. Thomas, H. Couchman, A. Evrard, J. Colberg, F. Pearce. Simulating the joint evolution of quasars, galaxies and their large-scale distribution. Nature, 435 (2005), 629–636.  
  80. U. Trottenberg, C. W. Oosterlee, A. Schüller. Multigrid. Academic Press, San Diego, 2001.  
  81. T. P. C. van Noije, M. H. Ernst, R. Brito. Ring kinetic theory for an idealized granular gas. Physica A, 251 (1998), 266–283.  
  82. J. H. Werth, S. M. Dammer, Z. Farkas, H. Hinrichsen, D. E. Wolf. Agglomeration in charged suspensions. Computer Physics Communications, 147 (2002), 259–262.  
  83. J. H. Werth, H. Knudsen, H. Hinrichsen. Agglomeration of oppositely charged particles in nonpolar liquids. Phys. Rev. E, 73 (2006), 021402.  
  84. J. H. Werth, M. Linsenbuhler, S. M. Dammer, Z. Farkas, H. Hinrichsen, K.-E. Wirth, D. E. Wolf. Agglomeration of charged nanopowders in suspensions. Powder Technology, 133 (2003), 106–112.  
  85. D. E. Wolf, T. N. Scheffler, J. Schäfer. Granular flow, collisional cooling and charged grains. Physica A, 274 (1999), 171–181.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.