Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow
Mathematical Modelling of Natural Phenomena (2012)
- Volume: 7, Issue: 2, page 77-82
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topKalisch, H.. "Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow." Mathematical Modelling of Natural Phenomena 7.2 (2012): 77-82. <http://eudml.org/doc/222414>.
@article{Kalisch2012,
abstract = {Two-dimensional inviscid channel flow of an incompressible fluid is considered. It is
shown that if the flow is steady and features no horizontal stagnation, then the flow must
necessarily be a parallel shear flow.},
author = {Kalisch, H.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {inviscid channel flow; hodograph transform; maximum principle; steady flow},
language = {eng},
month = {2},
number = {2},
pages = {77-82},
publisher = {EDP Sciences},
title = {Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow},
url = {http://eudml.org/doc/222414},
volume = {7},
year = {2012},
}
TY - JOUR
AU - Kalisch, H.
TI - Nonexistence of Coherent Structures in Two-dimensional Inviscid Channel Flow
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/2//
PB - EDP Sciences
VL - 7
IS - 2
SP - 77
EP - 82
AB - Two-dimensional inviscid channel flow of an incompressible fluid is considered. It is
shown that if the flow is steady and features no horizontal stagnation, then the flow must
necessarily be a parallel shear flow.
LA - eng
KW - inviscid channel flow; hodograph transform; maximum principle; steady flow
UR - http://eudml.org/doc/222414
ER -
References
top- M. Bjørkavåg, H. Kalisch. Wave breaking in Boussinesq models for undular bores. Phys. Lett. A, 375 (2011), 157–1578.
- A. Constantin, M. Ehrnström, E. Wahlén. Symmetry of steady periodic gravity water waves with vorticity. Duke Math. J., 140 (2007), 591–603.
- A. Constantin, W. Strauss. Exact steady periodic water waves with vorticity. Comm. Pure Appl. Math., 57 (2004), 481–527.
- W. Craig. Non-existence of solitary water waves in three dimensions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 360 (2002), 2127–2135.
- P.G. Drazin, W.H. Reid. Hydrodynamic stability. Cambridge University Press, Cambridge, 2004.
- M.-L. Dubreil-Jacotin. Sur la détermination rigoureuse des ondes permanentes périodiques d’ampleur finie. J. Math. Pures Appl., 13 (1934), 217–291.
- M.-L. Dubreil-Jacotin. Sur les théorèmes d’existence relatifs aux ondes permanentes périodiques ’a deux dimensions dans les liquides hétérogènes. J. Math. Pures Appl., 16 (1937), 43–67.
- M. Ehrnström. A note on surface profiles for symmetric gravity waves with vorticity. J. Nonlinear Math. Phys., 13 (2006), 1–8.
- M. Ehrnström. Uniqueness for steady periodic water waves with vorticity. Int. Math. Res. Not., 2005 (2005), 3721–3726.
- L.E. Fraenkel. On Kelvin-Stuart vortices in a viscous fluid. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 366 (2008), 2717–2728.
- S. Friedlander, W. Strauss, M. Vishik. Nonlinear instability in an ideal fluid. Ann. Inst. H. Poincaré Anal. Non Linéaire, 14 (1997), 187–209.
- D. Gilbarg, N.S. Trudinger. Elliptic partial differential equations of second order. Grundlehren der Mathematischen Wissenschaften 224, Springer, Berlin-New York, 1977.
- O. Goubet. A relation between the pressure gradient and the flux for the general channel flow problem. Appl. Math. Optim., 34 (1996), 361–365.
- B. Hof, C.W.H. van Doorne, J. Westerweel, F.T.M. Nieuwstadt, H. Faisst, B. Eckhardt, H. Wedin, R.R. Kerswell, F. Waleffe. Experimental Observation of Nonlinear Traveling Waves in Turbulent Pipe Flow. Science, 10 (2004), 1594–1598.
- V.M Hur, Z. Lin. Unstable surface waves in running water. Comm. Math. Phys., 282 (2008), 733–796.
- N.H. Ibragimov, R Aitbayev, R.N. Ibragimov. Three-dimensional nonlinear rotating surface waves in channels of variable depth in the presence of formation of a small perturbation of atmospheric pressure across the channel. Commun. Nonlinear Sci. and Numer. Simul., 14 (2009), 3811–3820.
- R.N. Ibragimov, D.E. Pelinovsky. Three-dimensional gravity waves in a channel of variable depth. Commun. Nonlinear Sci. and Numer. Simul., 13 (2008), 2104–2113.
- H. Kalisch. Periodic traveling water waves with isobaric streamlines. J. Nonlinear Math. Phys., 11 (2004), 461–471.
- H. Kalisch. A uniqueness result for periodic traveling waves in water of finite depth. Nonlinear Anal., 58 (2004), 779–785.
- W. Thomson. On disturbing infinity in Lord Rayleigh’s solution for waves in a plane vortex stratum. Nature, 23 (1880), 45–46.
- H. Lamb. Hydrodynamics. Cambridge University Press, London, 1924.
- P. Moin, J. Kim. Numerical investigation of turbulent channel flow. J. Fluid Mech., 118 (1982), 341–377.
- A.E. Trefethen, L.N. Trefethen, P.J. Schmid. Spectra and pseudospectra for pipe Poiseuille flow. Comput. Methods Appl. Mech. Engrg., 175 (1999), 413–420.
- E. Wahlén. Steady water waves with a critical layer. J. Differential Equations, 246 (2009), 2468–2483.
- F. Waleffe. Homotopy of exact coherent structures in plane shear flows. Phys. Fluids, 15 (2003), 1517–1534.
- P.O. Åsén, G. Kreiss. On a rigorous resolvent estimate for plane Couette flow. J. Math. Fluid Mech., 9 (2007), 153–180.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.